Small Object Detection Algorithm Based on Improved YOLOv8 for Remote Sensing

Due to the limitations of small targets in remote sensing images such as background noise, poor information, and so on, the results of commonly used detection algorithms in small target detection is not satisfactory. To improve the accuracy of detection results, we develop an improved algorithm base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing Jg. 17; S. 1 - 15
Hauptverfasser: Yi, Hao, Liu, Bo, Zhao, Bin, Liu, Enhai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1939-1404, 2151-1535
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Due to the limitations of small targets in remote sensing images such as background noise, poor information, and so on, the results of commonly used detection algorithms in small target detection is not satisfactory. To improve the accuracy of detection results, we develop an improved algorithm based on YOLOv8, called LAR-YOLOv8. First, in the feature extraction network, the local module is enhanced by using the dual-branch architecture attention mechanism, while the vision transformer block is used to maximize the representation of the feature map. Second, an attention-guided bi-directional feature pyramid network is designed to generate more discriminative information by efficiently extracting feature from the shallow network through a dynamic sparse attention mechanism, and adding top-down paths to guide the subsequent network modules for feature fusion. Finally, the RIOU loss function is proposed to avoid the failure of the loss function and improve the shape consistency between the predicted and ground truth box. Experimental results on NWPU VHR-10, RSOD and CARPK datasets verify that LAR-YOLOv8 achieves satisfactory results in terms of mAP (small), mAP, model parameters and FPS, and can prove that our modifications made to the original YOLOv8 model are effective.
AbstractList Due to the limitations of small targets in remote sensing images, such as background noise, poor information, and so on, the results of commonly used detection algorithms in small target detection is not satisfactory. To improve the accuracy of detection results, we develop an improved algorithm based on YOLOv8, called LAR-YOLOv8. First, in the feature extraction network, the local module is enhanced by using the dual-branch architecture attention mechanism, while the vision transformer block is used to maximize the representation of the feature map. Second, an attention-guided bidirectional feature pyramid network is designed to generate more discriminative information by efficiently extracting feature from the shallow network through a dynamic sparse attention mechanism, and adding top–down paths to guide the subsequent network modules for feature fusion. Finally, the RIOU loss function is proposed to avoid the failure of the loss function and improve the shape consistency between the predicted and ground-truth box. Experimental results on NWPU VHR-10, RSOD, and CARPK datasets verify that LAR-YOLOv8 achieves satisfactory results in terms of mAP (small), mAP, model parameters, and FPS, and can prove that our modifications made to the original YOLOv8 model are effective.
Due to the limitations of small targets in remote sensing images such as background noise, poor information, and so on, the results of commonly used detection algorithms in small target detection is not satisfactory. To improve the accuracy of detection results, we develop an improved algorithm based on YOLOv8, called LAR-YOLOv8. First, in the feature extraction network, the local module is enhanced by using the dual-branch architecture attention mechanism, while the vision transformer block is used to maximize the representation of the feature map. Second, an attention-guided bi-directional feature pyramid network is designed to generate more discriminative information by efficiently extracting feature from the shallow network through a dynamic sparse attention mechanism, and adding top-down paths to guide the subsequent network modules for feature fusion. Finally, the RIOU loss function is proposed to avoid the failure of the loss function and improve the shape consistency between the predicted and ground truth box. Experimental results on NWPU VHR-10, RSOD and CARPK datasets verify that LAR-YOLOv8 achieves satisfactory results in terms of mAP (small), mAP, model parameters and FPS, and can prove that our modifications made to the original YOLOv8 model are effective.
Author Yi, Hao
Liu, Bo
Zhao, Bin
Liu, Enhai
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0009-0007-5808-0161
  surname: Yi
  fullname: Yi, Hao
  organization: National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, China
– sequence: 2
  givenname: Bo
  orcidid: 0000-0003-3084-0126
  surname: Liu
  fullname: Liu, Bo
  organization: National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, China
– sequence: 3
  givenname: Bin
  surname: Zhao
  fullname: Zhao, Bin
  organization: National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, China
– sequence: 4
  givenname: Enhai
  surname: Liu
  fullname: Liu, Enhai
  organization: National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, China
BookMark eNqFUU1vEzEQtVCRSEt_ARxW4rzBX-uPYyiFBkWK1JRDT9bEOw6OdtfF61bi37PpVghx4TSjp3nvzcw7J2dDGpCQd4wuGaP247fd3ep2t-SUi6UQwnLRvCILzhpWs0Y0Z2TBrLA1k1S-IefjeKRUcW3Fgmx2PXRdtd0f0ZfqM5apxDRUq-6Qciw_-uoTjNhWE7TuH3J6mvr77Wb7ZKqQcnWLfSpY7XAY43B4S14H6Ea8fKkX5PuX67urm3qz_bq-Wm1qL6kttbFM76n3kqNG2YAIDVMgQCtllPJt66kCTQNwFTTzTQAMaGlrVGu9EiAuyHrWbRMc3UOOPeRfLkF0z0DKBwe5RN-ho5RKpZmRHrhUJljOWmo8p1qCDrCftD7MWtNxPx9xLO6YHvMwre-4paqxzFg1TYl5yuc0jhnDH1dG3SkCN0fgThG4lwgmlv2H5WOB039Lhtj9h_t-5kZE_MtNSK6NEr8BfEyVOw
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1007_s00607_024_01411_w
crossref_primary_10_1016_j_eswa_2024_126206
crossref_primary_10_3390_rs16122177
crossref_primary_10_1155_joro_8556780
crossref_primary_10_3390_drones8110691
crossref_primary_10_1109_TIM_2024_3428639
crossref_primary_10_1109_TGRS_2024_3509725
crossref_primary_10_3390_drones9020100
crossref_primary_10_1007_s40747_025_01956_z
crossref_primary_10_3390_aerospace11050392
crossref_primary_10_1038_s41598_025_00239_4
crossref_primary_10_1109_JSTARS_2024_3525148
crossref_primary_10_1117_1_JEI_33_6_063054
crossref_primary_10_3390_electronics14132607
crossref_primary_10_3390_rs16163057
crossref_primary_10_1109_JSTARS_2024_3474689
crossref_primary_10_3390_rs17010020
crossref_primary_10_1002_jemt_24775
crossref_primary_10_3390_rs16162878
crossref_primary_10_1109_JSTARS_2025_3530141
crossref_primary_10_1109_JSTARS_2025_3560200
crossref_primary_10_3390_rs16112026
crossref_primary_10_1016_j_aquaculture_2025_742722
crossref_primary_10_1088_1361_6501_add611
crossref_primary_10_1109_JSTARS_2025_3576780
crossref_primary_10_3390_rs16112024
crossref_primary_10_1016_j_measurement_2024_116624
crossref_primary_10_1016_j_procs_2025_01_058
crossref_primary_10_3390_biomimetics10070446
crossref_primary_10_1016_j_infrared_2025_105851
crossref_primary_10_1088_2632_2153_addbc2
crossref_primary_10_3390_electronics14132657
crossref_primary_10_1002_adfm_202501877
crossref_primary_10_3390_pr13030898
crossref_primary_10_3390_rs16173194
crossref_primary_10_1109_TIM_2025_3598390
crossref_primary_10_3390_agriengineering7010002
crossref_primary_10_1109_JSTARS_2025_3595197
crossref_primary_10_14358_PERS_24_00060R2
crossref_primary_10_1109_LGRS_2025_3569672
crossref_primary_10_1109_JSTARS_2025_3543951
crossref_primary_10_1109_TGRS_2025_3586239
crossref_primary_10_1177_16878132241258826
crossref_primary_10_1088_2631_8695_adc8fd
crossref_primary_10_1007_s00530_024_01622_3
crossref_primary_10_1109_TGRS_2025_3526799
crossref_primary_10_1109_ACCESS_2025_3589010
crossref_primary_10_1109_JSTARS_2024_3388013
crossref_primary_10_3390_app14041557
crossref_primary_10_3390_s24154858
crossref_primary_10_3390_app15126411
crossref_primary_10_3390_s25082477
crossref_primary_10_1007_s11042_024_18866_w
crossref_primary_10_1016_j_aquaculture_2025_742192
crossref_primary_10_54097_1mw0pm54
crossref_primary_10_1109_JSTARS_2025_3526982
crossref_primary_10_1016_j_aej_2025_01_032
crossref_primary_10_1007_s12239_024_00103_w
crossref_primary_10_1109_TGRS_2024_3486559
crossref_primary_10_1177_09544054251359468
crossref_primary_10_1007_s40747_025_01875_z
crossref_primary_10_1109_ACCESS_2024_3487492
crossref_primary_10_3390_rs16132465
crossref_primary_10_1109_JSTARS_2025_3557092
crossref_primary_10_1109_JSTARS_2025_3551551
crossref_primary_10_1038_s41598_025_89124_8
crossref_primary_10_1109_ACCESS_2025_3539924
crossref_primary_10_1007_s11042_025_20872_5
crossref_primary_10_3390_rs16224175
crossref_primary_10_1371_journal_pone_0330759
crossref_primary_10_1109_TGRS_2025_3583467
crossref_primary_10_1109_LGRS_2025_3546034
crossref_primary_10_3390_rs16234374
crossref_primary_10_1109_JSTARS_2024_3524379
crossref_primary_10_1007_s11554_025_01716_9
crossref_primary_10_1109_LGRS_2024_3398106
crossref_primary_10_1108_IJICC_08_2024_0383
crossref_primary_10_3390_rs17152672
crossref_primary_10_3390_rs17020297
crossref_primary_10_3390_rs17132204
crossref_primary_10_1109_JSTARS_2024_3452680
crossref_primary_10_3390_jmse12101774
crossref_primary_10_1016_j_cviu_2025_104489
crossref_primary_10_1007_s11227_025_07577_0
crossref_primary_10_1016_j_atech_2025_101181
crossref_primary_10_1061_JCCEE5_CPENG_6829
crossref_primary_10_3389_fnbot_2024_1430155
crossref_primary_10_1109_JSTARS_2025_3543189
crossref_primary_10_3390_electronics13112080
crossref_primary_10_1049_ipr2_70110
crossref_primary_10_1155_ijae_5533761
crossref_primary_10_1109_JSTARS_2024_3525177
crossref_primary_10_1109_LGRS_2025_3534786
crossref_primary_10_3390_rs17122099
crossref_primary_10_20965_jaciii_2025_p0941
crossref_primary_10_1016_j_compeleceng_2025_110413
crossref_primary_10_3390_land14020326
crossref_primary_10_3390_rs17142421
crossref_primary_10_3390_rs17183170
crossref_primary_10_1109_ACCESS_2024_3486311
crossref_primary_10_3390_rs17152572
crossref_primary_10_1016_j_rsase_2025_101582
crossref_primary_10_3390_drones8090495
crossref_primary_10_1016_j_engappai_2025_111820
crossref_primary_10_1007_s10586_024_04474_8
crossref_primary_10_1007_s11554_025_01623_z
Cites_doi 10.1109/CVPR.2019.00075
10.1145/3505244
10.3390/rs12152501
10.1080/01431161.2020.1811422
10.1016/j.neucom.2022.07.042
10.1109/ICCV.2017.74
10.1109/TGRS.2017.2778300
10.1109/CVPR.2017.690
10.1109/CVPR.2016.91
10.1109/TIV.2023.3282567
10.1109/JSTARS.2021.3087555
10.1007/978-3-030-58555-6_16
10.1109/TCYB.2021.3095305
10.1109/TGRS.2016.2601622
10.3390/rs12223750
10.3390/rs13112171
10.1109/ICCV48922.2021.00061
10.3390/rs14040871
10.1609/aaai.v34i07.6999
10.1109/JSTARS.2020.3005403
10.1371/journal.pone.0259283
10.1109/CVPR52688.2022.00475
10.3390/rs13071311
10.1109/TGRS.2016.2645610
10.1109/TPAMI.2022.3152247
10.1109/JSTARS.2022.3206399
10.1016/j.isprsjprs.2019.11.023
10.1109/ICCV.2017.322
10.1016/j.compeleceng.2022.108490
10.1109/TGRS.2023.3258666
10.1109/TPAMI.2019.2956516
10.1109/JSTARS.2022.3140776
10.1007/978-3-319-10602-1_48
10.1109/JSTARS.2022.3148139
10.1109/LGRS.2018.2813094
10.1109/CVPR52688.2022.01058
10.1109/TPAMI.2015.2437384
10.1109/ICCV.2019.00667
10.1109/CVPR52729.2023.00995
10.1109/icip49359.2023.10222333
10.1109/CVPR52729.2023.00721
10.1109/LGRS.2019.2912582
10.1109/tpami.2016.2577031
10.1109/JSTARS.2022.3176141
10.1109/ICCV.2017.446
10.1109/ICCVW54120.2021.00312
10.1117/1.JEI.31.4.043049
10.1016/j.jag.2021.102456
10.1109/ACCESS.2023.3233964
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2023.3339235
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 15
ExternalDocumentID oai_doaj_org_article_000467184ca2468f921d08c2074a7fab
10_1109_JSTARS_2023_3339235
10342786
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62375266
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
AETIX
AGSQL
CITATION
EJD
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c409t-8917b0cc42e7e45a3f516a3a766866cddc06a70fa26f71c5faefe90d86d9c63a3
IEDL.DBID DOA
ISICitedReferencesCount 147
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001133505400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Tue Oct 14 14:32:29 EDT 2025
Fri Jul 25 10:36:17 EDT 2025
Sat Nov 29 04:51:20 EST 2025
Tue Nov 18 20:50:30 EST 2025
Wed Aug 27 02:35:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-8917b0cc42e7e45a3f516a3a766866cddc06a70fa26f71c5faefe90d86d9c63a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3084-0126
0009-0007-5808-0161
0000-0002-2959-3968
OpenAccessLink https://doaj.org/article/000467184ca2468f921d08c2074a7fab
PQID 2906591896
PQPubID 75722
PageCount 15
ParticipantIDs ieee_primary_10342786
doaj_primary_oai_doaj_org_article_000467184ca2468f921d08c2074a7fab
crossref_citationtrail_10_1109_JSTARS_2023_3339235
proquest_journals_2906591896
crossref_primary_10_1109_JSTARS_2023_3339235
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
Li (ref14) 2022
ref53
ref52
ref10
ref54
ref17
Bochkovskiy (ref12) 2020
ref16
ref19
Fan (ref39) 2023
ref18
ref51
ref50
Jocher (ref13) 2020
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Redmon (ref11) 2018
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref43
  doi: 10.1109/CVPR.2019.00075
– ident: ref18
  doi: 10.1145/3505244
– ident: ref29
  doi: 10.3390/rs12152501
– ident: ref27
  doi: 10.1080/01431161.2020.1811422
– year: 2020
  ident: ref12
  article-title: YOLOv4: Optimal speed and accuracy of object detection
– ident: ref45
  doi: 10.1016/j.neucom.2022.07.042
– ident: ref48
  doi: 10.1109/ICCV.2017.74
– ident: ref24
  doi: 10.1109/TGRS.2017.2778300
– ident: ref10
  doi: 10.1109/CVPR.2017.690
– ident: ref9
  doi: 10.1109/CVPR.2016.91
– ident: ref16
  doi: 10.1109/TIV.2023.3282567
– ident: ref31
  doi: 10.1109/JSTARS.2021.3087555
– year: 2023
  ident: ref39
  article-title: Rethinking local perception in lightweight vision transformer
– ident: ref51
  doi: 10.1007/978-3-030-58555-6_16
– ident: ref42
  doi: 10.1109/TCYB.2021.3095305
– ident: ref22
  doi: 10.1109/TGRS.2016.2601622
– ident: ref28
  doi: 10.3390/rs12223750
– ident: ref30
  doi: 10.3390/rs13112171
– year: 2018
  ident: ref11
  article-title: YOLOv3: An incremental improvement
– ident: ref20
  doi: 10.1109/ICCV48922.2021.00061
– ident: ref21
  doi: 10.3390/rs14040871
– ident: ref44
  doi: 10.1609/aaai.v34i07.6999
– ident: ref5
  doi: 10.1109/JSTARS.2020.3005403
– ident: ref35
  doi: 10.1371/journal.pone.0259283
– ident: ref19
  doi: 10.1109/CVPR52688.2022.00475
– ident: ref26
  doi: 10.3390/rs13071311
– ident: ref23
  doi: 10.1109/TGRS.2016.2645610
– ident: ref17
  doi: 10.1109/TPAMI.2022.3152247
– ident: ref38
  doi: 10.1109/JSTARS.2022.3206399
– ident: ref4
  doi: 10.1016/j.isprsjprs.2019.11.023
– ident: ref8
  doi: 10.1109/ICCV.2017.322
– ident: ref33
  doi: 10.1016/j.compeleceng.2022.108490
– ident: ref54
  doi: 10.1109/TGRS.2023.3258666
– ident: ref49
  doi: 10.1109/TPAMI.2019.2956516
– ident: ref32
  doi: 10.1109/JSTARS.2022.3140776
– ident: ref47
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref3
  doi: 10.1109/JSTARS.2022.3148139
– ident: ref25
  doi: 10.1109/LGRS.2018.2813094
– ident: ref41
  doi: 10.1109/CVPR52688.2022.01058
– ident: ref6
  doi: 10.1109/TPAMI.2015.2437384
– ident: ref50
  doi: 10.1109/ICCV.2019.00667
– ident: ref40
  doi: 10.1109/CVPR52729.2023.00995
– ident: ref52
  doi: 10.1109/icip49359.2023.10222333
– ident: ref15
  doi: 10.1109/CVPR52729.2023.00721
– ident: ref2
  doi: 10.1109/LGRS.2019.2912582
– ident: ref7
  doi: 10.1109/tpami.2016.2577031
– ident: ref36
  doi: 10.1109/JSTARS.2022.3176141
– year: 2022
  ident: ref14
  article-title: YOLOv6: A single-stage object detection framework for industrial applications
– ident: ref46
  doi: 10.1109/ICCV.2017.446
– ident: ref53
  doi: 10.1109/ICCVW54120.2021.00312
– ident: ref34
  doi: 10.1117/1.JEI.31.4.043049
– year: 2020
  ident: ref13
  article-title: Ultralytics/YOLOv5: Initial release
  publication-title: Zenodo
– ident: ref1
  doi: 10.1016/j.jag.2021.102456
– ident: ref37
  doi: 10.1109/ACCESS.2023.3233964
SSID ssj0062793
Score 2.6523001
Snippet Due to the limitations of small targets in remote sensing images such as background noise, poor information, and so on, the results of commonly used detection...
Due to the limitations of small targets in remote sensing images, such as background noise, poor information, and so on, the results of commonly used detection...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Ambient noise
Attention mechanism
Background noise
Deep learning
Detection
Detection algorithms
Feature extraction
Feature maps
Modules
Object recognition
Optical imaging
Optical sensors
Parameter modification
Real-time systems
Remote sensing
Target detection
Transformers
Vision transformer
YOLOv8
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTxQxFH8BgokXBcW4CqYHjs46087247goyGHDGlYJnppOP4BkmTXLQOJ_72uniyREE26Tpp1p-mv7Pua93wPYN3jnox4aAxxMKGpqXdGEYAuL4t4zQalJsTlnE3FyIs_P1becrJ5yYbz3KfjMD-Nj-pfvFvY2usrwhLNYGYKvw7oQvE_WWl27nIrEsIsKiSoiZ0ymGKpK9Qn3-Ph0NoyVwoeMoUaQirv9FUOJrT-XV3l0JydBc_TyiVPcghdZoyTjfgtsw5pvX8Gzr6li7-_XMJldm_mcTJvocCFffJdir1oynl8sllfd5TU5QEHmCDb1DgZ8_jmdTO8kQX2WnHrE0pNZjHNvL3bgx9Hh98_HRS6hUFg03LpCojXWlNbW1AtfjwwLo4obZgTnknPrnC25EWUwlAdR2VEwPnhVOsmdspwZ9gY22kXr3wIRcY1DUE2jbK2kkwHNW8rwLUZWrDIDoKsV1Tbzi8cyF3Od7IxS6R4GHWHQGYYBfLwf9Kun1_h_94MI1X3XyI2dGhADnY-aTgmxKHJra2jNZVC0cqW0FJUlI4JpBrATcXvwvR6yAeyukNf5IN_oyIY_UpVU_N0_hr2H5zjFunfL7MJGt7z1e7Bp77qrm-WHtEf_ADgw4JU
  priority: 102
  providerName: IEEE
Title Small Object Detection Algorithm Based on Improved YOLOv8 for Remote Sensing
URI https://ieeexplore.ieee.org/document/10342786
https://www.proquest.com/docview/2906591896
https://doaj.org/article/000467184ca2468f921d08c2074a7fab
Volume 17
WOSCitedRecordID wos001133505400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iCl7Ej4nTOXLwaGebdPk4bn4exiZORU8hTRMVtk50DvzvfUm7KQh68VZC2rQvr--Ll98PoUMNNh_iUN_goF2UEpNHmXMmMuDuLeWE6NCbc9fj_b64v5dX36i-fE9YCQ9cCu44HG8EA5oaTVImnCRJHgtDwPVp7nTmrW_M5TyZKm0wI6B2FcZQEstjUPLO9bDlqcJblEJIENjdvvxQgOuv-FV-GOXgac430HoVIuJO-WqbaMkWW2j1IlDwfmyj3nCsRyM8yHwFBZ_aaWimKnBn9DiBTP9pjLvgmXIMQ2XFAK4fBr3BTGAIUPG1hc2xeOgb14vHGro9P7s5uYwqToTIQCY2jQSkV1lsTEost2lbU9dOmKaaMyYYM3luYqZ57DRhjiem7bR1Vsa5YLk0jGq6g5aLSWF3EeZeTs7JLJMmlSIXDvJVQuEpWiQ00XVE5hJSpgIM97wVIxUSh1iqUqzKi1VVYq2jo8VNLyVexu_Tu170i6ke7DoMgAqoSgXUXypQRzW_cd_Wo55AhNVRY76Tqvoz35SHt2_LREi29x9r76M1-J60LMo00PL09d0eoBUzmz6_vTaDUjbDocJP1pfg9Q
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagBcGF8ihioYAPHMmS2I4fxy20FBF2UbegcrIcP0qlbRZt00r8e8aOtyBVIHGLLDux_NmeR2a-QeiVgTsf9NAY4GBCwYh1RRuCLSyIe08FISbF5nxtxHQqj4_V55ysnnJhvPcp-MyP42P6l--W9iK6yuCE01gZgt9EmzVjpBzStdYXLyciceyCSqKKyBqTSYaqUr2BXT45nI9jrfAxpaATpPJuvwVR4uvPBVau3cpJ1Oxv_eck76N7WafEk2ETPEA3fPcQ3X6favb-fISa-ZlZLPCsjS4X_M73Kfqqw5PFyXJ12n8_w7sgyhyGpsHFAM_fZs3sUmLQaPGhBzQ9nsdI9-5kG33Z3zt6e1DkIgqFBdOtLyTYY21pLSNeeFYbGuqKG2oE55Jz65wtuRFlMIQHUdk6GB-8Kp3kTllODX2MNrpl558gLOIah6DaVlmmpJMBDFxC4S1GVrQyI0TWK6ptZhiPhS4WOlkapdIDDDrCoDMMI_T6atCPgWDj3913I1RXXSM7dmoADHQ-bDqlxILQZdYQxmVQpHKltATUJSOCaUdoO-L2x_cGyEZoZ428zkf5XEc-_FpVUvGnfxn2Et05OPrU6ObD9OMzdBemywYnzQ7a6FcX_jm6ZS_70_PVi7RffwEQNOPc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+Object+Detection+Algorithm+Based+on+Improved+YOLOv8+for+Remote+Sensing&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Hao+Yi&rft.au=Bo+Liu&rft.au=Bin+Zhao&rft.au=Enhai+Liu&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2151-1535&rft.volume=17&rft.spage=1734&rft.epage=1747&rft_id=info:doi/10.1109%2FJSTARS.2023.3339235&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_000467184ca2468f921d08c2074a7fab
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon