3D-CNN and Autoencoder-Based Gas Detection in Hyperspectral Images

The detection of gas emission levels is a crucial problem for ecology and human health. Hyperspectral image analysis offers many advantages over traditional gas detection systems with its detection capability from safe distances. Observing that the existing hyperspectral gas detection methods in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing Jg. 16; S. 1474 - 1482
Hauptverfasser: Ozdemir, Okan Bilge, Koz, Alper
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1939-1404, 2151-1535
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The detection of gas emission levels is a crucial problem for ecology and human health. Hyperspectral image analysis offers many advantages over traditional gas detection systems with its detection capability from safe distances. Observing that the existing hyperspectral gas detection methods in the thermal range neglect the fact that the captured radiance in the longwave infrared (LWIR) spectrum is better modeled as a mixture of the radiance of background and target gases, we propose a deep learning-based hyperspectral gas detection method in this article, which combines unmixing and classification. The proposed method first converts the radiance data to luminance-temperature data. Then, a 3-D convolutional neural network (CNN) and autoencoder-based network, which is specially designed for unmixing, is applied to the resulting data to acquire abundances and endmembers for each pixel. Finally, the detection is achieved by a three-layer fully connected network to detect the target gases at each pixel based on the extracted endmember spectra and abundance values. The superior performance of the proposed method with respect to the conventional hyperspectral gas detection methods using spectral angle mapper and adaptive cosine estimator is verified with LWIR hyperspectral images including methane and sulfur dioxide gases. In addition, the ablation study with respect to different combinations of the proposed structure including direct classification and unmixing methods has revealed the contribution of the proposed system.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1939-1404
2151-1535
DOI:10.1109/JSTARS.2023.3235781