Feasible generalized least squares for panel data with cross-sectional and serial correlations

This paper considers generalized least squares (GLS) estimation for linear panel data models. By estimating the large error covariance matrix consistently, the proposed feasible GLS estimator is more efficient than the ordinary least squares in the presence of heteroskedasticity, serial and cross-se...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Empirical economics Ročník 60; číslo 1; s. 309 - 326
Hlavní autoři: Bai, Jushan, Choi, Sung Hoon, Liao, Yuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2021
Springer Nature B.V
Témata:
ISSN:0377-7332, 1435-8921
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper considers generalized least squares (GLS) estimation for linear panel data models. By estimating the large error covariance matrix consistently, the proposed feasible GLS estimator is more efficient than the ordinary least squares in the presence of heteroskedasticity, serial and cross-sectional correlations. The covariance matrix used for the feasible GLS is estimated via the banding and thresholding method. We establish the limiting distribution of the proposed estimator. A Monte Carlo study is considered. The proposed method is applied to an empirical application.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0377-7332
1435-8921
DOI:10.1007/s00181-020-01977-2