On Hyperparameter Optimization of Machine Learning Methods Using a Bayesian Optimization Algorithm to Predict Work Travel Mode Choice
Prediction of work Travel mode choice is one of the most important parts of travel demand forecasting. Planners can achieve sustainability goals by accurately forecasting how people will get to and from work. In the prediction of travel mode selection, machine learning methods are commonly employed....
Saved in:
| Published in: | IEEE access Vol. 11; pp. 19762 - 19774 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Prediction of work Travel mode choice is one of the most important parts of travel demand forecasting. Planners can achieve sustainability goals by accurately forecasting how people will get to and from work. In the prediction of travel mode selection, machine learning methods are commonly employed. To fit a machine-learning model to various challenges, the hyperparameters must be tweaked. Choosing the optimal hyperparameter configuration for machine learning models has an immediate effect on the performance of the model. In this paper, optimizing the hyperparameters of common machine learning models, including support vector machines, k-nearest neighbor, single decision trees, ensemble decision trees, and Naive Bayes, is studied using the Bayesian Optimization algorithm. These models were developed and optimized using two datasets from the 2017 National Household Travel Survey. Using several criteria, including average accuracy (%), average area under the receiver operating characteristics, and a simple ranking system, the performance of the optimized models was investigated. The findings of this study show that the BO is an effective model for improving the performance of the k-nearest neighbor model more than other models. This research lays the groundwork for using optimized machine learning methods to mitigate the negative consequences of automobile use. |
|---|---|
| AbstractList | Prediction of work Travel mode choice is one of the most important parts of travel demand forecasting. Planners can achieve sustainability goals by accurately forecasting how people will get to and from work. In the prediction of travel mode selection, machine learning methods are commonly employed. To fit a machine-learning model to various challenges, the hyperparameters must be tweaked. Choosing the optimal hyperparameter configuration for machine learning models has an immediate effect on the performance of the model. In this paper, optimizing the hyperparameters of common machine learning models, including support vector machines, k-nearest neighbor, single decision trees, ensemble decision trees, and Naive Bayes, is studied using the Bayesian Optimization algorithm. These models were developed and optimized using two datasets from the 2017 National Household Travel Survey. Using several criteria, including average accuracy (%), average area under the receiver operating characteristics, and a simple ranking system, the performance of the optimized models was investigated. The findings of this study show that the BO is an effective model for improving the performance of the k-nearest neighbor model more than other models. This research lays the groundwork for using optimized machine learning methods to mitigate the negative consequences of automobile use. |
| Author | Leonowicz, Zbigniew Jasinski, Michal Novak, Tomas Ali, Mujahid Aghaabbasi, Mahdi |
| Author_xml | – sequence: 1 givenname: Mahdi orcidid: 0000-0003-2874-5429 surname: Aghaabbasi fullname: Aghaabbasi, Mahdi email: mahdi.a@chula.ac.th organization: Transportation Institute, Chulalongkorn University, Bangkok, Thailand – sequence: 2 givenname: Mujahid orcidid: 0000-0003-4376-0459 surname: Ali fullname: Ali, Mujahid organization: Department of Transport Systems, Traffic Engineering and Logistics, Faculty of Transport and Aviation Engineering, Silesian University of Technology, Katowice, Poland – sequence: 3 givenname: Michal orcidid: 0000-0002-0983-2562 surname: Jasinski fullname: Jasinski, Michal organization: Department of Electrical Engineering Fundamentals, Faculty of Electrical Engineering, Wrocław University of Science and Technology, Wrocław, Poland – sequence: 4 givenname: Zbigniew orcidid: 0000-0002-2388-3710 surname: Leonowicz fullname: Leonowicz, Zbigniew organization: Department of Electrical Engineering Fundamentals, Faculty of Electrical Engineering, Wrocław University of Science and Technology, Wrocław, Poland – sequence: 5 givenname: Tomas surname: Novak fullname: Novak, Tomas organization: Department of Electrical Power Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic |
| BookMark | eNqFkU9v1DAQxaOqSJTST0APljjv4r-Jc1yiQivtapHaqkdr4kx2vWTjYLtIy53vTbapUOFSX-wZze-9kd-77LT3PWbZB0bnjNHy06Kqrm5v55xyMRdcFlLqk-yMs7ycCSXy0xfvt9lFjDs6Hj22VHGW_V735PowYBggwB4TBrIektu7X5Cc74lvyQrs1vVIlgihd_2GrDBtfRPJfTxWQD7DAaOD_l9y0W18cGm7J8mTbwEbZxN58OE7uQvwEzuy8g2SauudxffZmxa6iBfP93l2_-XqrrqeLddfb6rFcmYlLdNMyVrkwEBRrpGjtAiQF0rXnCOTPG-Q1czWmtK21bzVqpAC6qamdSEtb7k4z24m3cbDzgzB7SEcjAdnnho-bAyE5GyHplG64bK1iudaas1B2lKWtmCIomV5Pmp9nLSG4H88Ykxm5x9DP65veKHZCClRjlNimrLBxxiw_evKqDnGZ6b4zDE-8xzfSJX_Udalp29NAVz3Cns5sQ4RX7hRWSpVij_a-qtw |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_cie_2025_111507 crossref_primary_10_1016_j_saa_2025_126118 crossref_primary_10_1109_TFUZZ_2025_3583874 crossref_primary_10_1038_s41598_025_99999_2 crossref_primary_10_1016_j_jfca_2024_106412 crossref_primary_10_1109_ACCESS_2023_3312305 crossref_primary_10_1016_j_rineng_2024_103534 crossref_primary_10_1088_1361_6501_ad9101 crossref_primary_10_1016_j_sftr_2025_101119 crossref_primary_10_1016_j_jer_2023_09_021 crossref_primary_10_1080_15567036_2024_2325658 crossref_primary_10_1109_ACCESS_2023_3313596 crossref_primary_10_3390_electronics13071384 crossref_primary_10_1109_ACCESS_2025_3532697 crossref_primary_10_1088_2515_7620_ad7e81 crossref_primary_10_1155_2024_6681895 crossref_primary_10_1016_j_cstp_2025_101478 crossref_primary_10_3390_en17133295 crossref_primary_10_32604_cmc_2024_058888 crossref_primary_10_1109_ACCESS_2024_3427402 crossref_primary_10_1016_j_oceaneng_2025_121962 crossref_primary_10_1016_j_heliyon_2024_e30657 crossref_primary_10_1016_j_iot_2025_101574 crossref_primary_10_1007_s11760_024_03479_5 crossref_primary_10_1016_j_jestch_2025_102012 crossref_primary_10_1016_j_trc_2025_105125 crossref_primary_10_1007_s40808_024_02215_9 crossref_primary_10_1016_j_jhydrol_2025_132892 crossref_primary_10_1007_s11709_024_1126_7 crossref_primary_10_1007_s42979_024_03355_6 crossref_primary_10_3390_machines13070570 |
| Cites_doi | 10.1111/j.1751-5823.2001.tb00465.x 10.3390/su132112226 10.1016/j.jtrangeo.2016.06.003 10.1016/j.chieco.2006.09.001 10.1080/19427867.2017.1299396 10.1080/03081060290032051 10.1061/JTEPBS.0000158 10.1016/j.tra.2021.03.021 10.1016/j.trb.2017.03.012 10.1080/15568318.2019.1686782 10.3390/su141710467 10.1080/15568318.2019.1570404 10.1016/j.tra.2017.05.016 10.3390/su14063395 10.2495/UT070641 10.2307/2685209 10.1016/j.tra.2011.09.012 10.1016/j.tbs.2020.02.003 10.1609/aaai.v29i1.9375 10.3390/buildings12070919 10.1177/0042098008093377 10.1139/L10-008 10.3141/2468-13 10.1155/2014/434972 10.1007/s11116-012-9399-4 10.3390/su13137465 10.1016/j.jtrangeo.2020.102708 10.1016/j.eswa.2017.01.057 10.3390/su14042436 10.1016/j.jocm.2018.02.002 10.1147/JRD.2017.2709578 10.3390/su14010325 10.1016/j.eswa.2021.116253 10.5038/2375-0901.17.2.4 10.3141/1854-06 10.3390/app112411916 10.1063/1.5042897 10.1023/A:1010933404324 10.3141/2156-09 10.1016/j.cities.2021.103114 10.1016/j.tbs.2018.09.002 10.1007/978-1-4614-6849-3 10.1017/cbo9780511805271 10.1007/s13721-016-0125-6 10.3390/su14073989 10.1016/j.neucom.2020.07.061 10.3390/su141711094 10.1016/j.tra.2020.04.013 10.1016/j.tbs.2022.07.003 10.1007/s11069-021-04862-y 10.1177/0361198105192400111 10.1016/j.tra.2008.11.011 10.1007/978-1-4615-7566-5 10.1016/j.tra.2022.02.003 10.1061/(ASCE)UP.1943-5444.0000710 10.1155/2019/6278908 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2023.3247448 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 19774 |
| ExternalDocumentID | oai_doaj_org_article_d58d24fc52684882a4c949c71ee3f166 10_1109_ACCESS_2023_3247448 10049559 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Studentská grantová soutěž [Student Grant Competition (SGS)] – fundername: VSB—the Technical University of Ostrava grantid: SP2023/005 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-54b36a1a5028e2e4ceaa6758b22e1426de1b1cb800ff82f85743abdb0b74c2f23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000943309600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:27 EDT 2025 Sun Nov 30 05:16:37 EST 2025 Tue Nov 18 22:35:00 EST 2025 Sat Nov 29 04:02:25 EST 2025 Wed Aug 27 02:14:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-54b36a1a5028e2e4ceaa6758b22e1426de1b1cb800ff82f85743abdb0b74c2f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2388-3710 0000-0003-2874-5429 0000-0003-4376-0459 0000-0002-0983-2562 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10049559 |
| PQID | 2781848539 |
| PQPubID | 4845423 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2023_3247448 doaj_primary_oai_doaj_org_article_d58d24fc52684882a4c949c71ee3f166 crossref_citationtrail_10_1109_ACCESS_2023_3247448 ieee_primary_10049559 proquest_journals_2781848539 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref56 ref59 ref58 ref53 Xu (ref47) 2022; 14 ref52 ref11 ref55 ref10 ref17 ref16 ref19 ref18 Elshawi (ref31) 2019 ref51 Wang (ref46) 2022; 12 ref50 Maclaurin (ref39) Ali (ref14) 2021; 13 ref45 Vapnik (ref54) 1999 ref48 ref42 ref41 ref44 Breiman (ref57) 2001; 45 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 McFadden (ref20) 1973 Ali (ref28) 2021; 13 ref37 ref36 Qian (ref34) 2021; 11 ref30 ref33 ref32 Ben-Akiva (ref22) 1985 ref2 ref1 ref38 Tang (ref35) 2022; 14 ref23 ref26 ref25 ref63 Ali (ref15) 2020; 63 ref21 Yang (ref24) 2022; 14 ref27 Eggensperger (ref43); 10 Chen (ref29) 2021; 14 ref60 ref62 ref61 |
| References_xml | – ident: ref56 doi: 10.1111/j.1751-5823.2001.tb00465.x – volume-title: Discrete Choice Analysis: Theory and Application to Travel Demand year: 1985 ident: ref22 – volume-title: The Nature of Support Vector Machine year: 1999 ident: ref54 – volume: 13 start-page: 12226 issue: 21 year: 2021 ident: ref28 article-title: Time-use and spatio-temporal variables influence on physical activity intensity, physical and social health of travelers publication-title: Sustainability doi: 10.3390/su132112226 – ident: ref6 doi: 10.1016/j.jtrangeo.2016.06.003 – ident: ref1 doi: 10.1016/j.chieco.2006.09.001 – ident: ref53 doi: 10.1080/19427867.2017.1299396 – ident: ref3 doi: 10.1080/03081060290032051 – ident: ref52 doi: 10.1061/JTEPBS.0000158 – ident: ref9 doi: 10.1016/j.tra.2021.03.021 – ident: ref60 doi: 10.1016/j.trb.2017.03.012 – ident: ref16 doi: 10.1080/15568318.2019.1686782 – volume: 14 start-page: 10467 issue: 17 year: 2022 ident: ref24 article-title: Comparative analysis of the optimized KNN, SVM, and ensemble DT models using Bayesian optimization for predicting pedestrian fatalities: An advance towards realizing the sustainable safety of pedestrians publication-title: Sustainability doi: 10.3390/su141710467 – ident: ref49 doi: 10.1080/15568318.2019.1570404 – start-page: 105 volume-title: Frontiers in Econometrics year: 1973 ident: ref20 article-title: Conditional logit analysis of qualitative choice behavior – ident: ref2 doi: 10.1016/j.tra.2017.05.016 – ident: ref33 doi: 10.3390/su14063395 – ident: ref48 doi: 10.2495/UT070641 – year: 2019 ident: ref31 article-title: Automated machine learning: State-of-the-art and open challenges publication-title: arXiv:1906.02287 – ident: ref55 doi: 10.2307/2685209 – ident: ref17 doi: 10.1016/j.tra.2011.09.012 – ident: ref27 doi: 10.1016/j.tbs.2020.02.003 – ident: ref44 doi: 10.1609/aaai.v29i1.9375 – volume: 12 start-page: 919 issue: 7 year: 2022 ident: ref46 article-title: A novel combination of PCA and machine learning techniques to select the most important factors for predicting tunnel construction performance publication-title: Buildings doi: 10.3390/buildings12070919 – ident: ref11 doi: 10.1177/0042098008093377 – ident: ref4 doi: 10.1139/L10-008 – ident: ref50 doi: 10.3141/2468-13 – ident: ref41 doi: 10.1155/2014/434972 – ident: ref5 doi: 10.1007/s11116-012-9399-4 – volume: 13 start-page: 7465 issue: 13 year: 2021 ident: ref14 article-title: The influence of COVID-19-Induced daily activities on health parameters—A case study in Malaysia publication-title: Sustainability doi: 10.3390/su13137465 – ident: ref13 doi: 10.1016/j.jtrangeo.2020.102708 – ident: ref19 doi: 10.1016/j.eswa.2017.01.057 – ident: ref45 doi: 10.3390/su14042436 – ident: ref23 doi: 10.1016/j.jocm.2018.02.002 – ident: ref36 doi: 10.1147/JRD.2017.2709578 – volume: 14 start-page: 325 issue: 1 year: 2021 ident: ref29 article-title: Hybrid Bayesian network models to investigate the impact of built environment experience before adulthood on students’ tolerable travel time to campus: Towards sustainable commute behavior publication-title: Sustainability doi: 10.3390/su14010325 – volume: 10 start-page: 1 issue: 3 volume-title: Proc. NIPS Workshop Bayesian Optim. Theory Pract. ident: ref43 article-title: Towards an empirical foundation for assessing Bayesian optimization of hyperparameters – volume: 63 start-page: 4026 issue: 6 year: 2020 ident: ref15 article-title: Travel behaviour and health: Interaction of activity-travel pattern, travel parameter and physical intensity publication-title: Solid State Technol. – ident: ref30 doi: 10.1016/j.eswa.2021.116253 – ident: ref12 doi: 10.5038/2375-0901.17.2.4 – ident: ref58 doi: 10.3141/1854-06 – volume: 11 start-page: 11916 issue: 24 year: 2021 ident: ref34 article-title: Classification of imbalanced travel mode choice to work data using adjustable SVM model publication-title: Appl. Sci. doi: 10.3390/app112411916 – ident: ref51 doi: 10.1063/1.5042897 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: ref57 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: ref61 doi: 10.3141/2156-09 – ident: ref10 doi: 10.1016/j.cities.2021.103114 – ident: ref26 doi: 10.1016/j.tbs.2018.09.002 – ident: ref32 doi: 10.1007/978-1-4614-6849-3 – ident: ref21 doi: 10.1017/cbo9780511805271 – ident: ref38 doi: 10.1007/s13721-016-0125-6 – volume: 14 start-page: 3989 issue: 7 year: 2022 ident: ref35 article-title: How sustainable is people’s travel to reach public transit stations to go to work? A machine learning approach to reveal complex relationships publication-title: Sustainability doi: 10.3390/su14073989 – ident: ref37 doi: 10.1016/j.neucom.2020.07.061 – volume: 14 start-page: 11094 issue: 17 year: 2022 ident: ref47 article-title: Targeting sustainable transportation development: The support vector machine and the Bayesian optimization algorithm for classifying household vehicle ownership publication-title: Sustainability doi: 10.3390/su141711094 – ident: ref18 doi: 10.1016/j.tra.2020.04.013 – ident: ref59 doi: 10.1016/j.tbs.2022.07.003 – ident: ref42 doi: 10.1007/s11069-021-04862-y – ident: ref62 doi: 10.1177/0361198105192400111 – ident: ref63 doi: 10.1016/j.tra.2008.11.011 – start-page: 2113 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref39 article-title: Gradient-based hyperparameter optimization through reversible learning – ident: ref25 doi: 10.1007/978-1-4615-7566-5 – ident: ref8 doi: 10.1016/j.tra.2022.02.003 – ident: ref7 doi: 10.1061/(ASCE)UP.1943-5444.0000710 – ident: ref40 doi: 10.1155/2019/6278908 |
| SSID | ssj0000816957 |
| Score | 2.4877203 |
| Snippet | Prediction of work Travel mode choice is one of the most important parts of travel demand forecasting. Planners can achieve sustainability goals by accurately... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 19762 |
| SubjectTerms | Algorithms Bayes methods Bayesian analysis Bayesian optimization algorithm Decision trees Forecasting hyperparameters Machine learning Mathematical models Modal choice Optimization Optimization algorithms Predictive models Support vector machines sustainable mode choice decision Transportation Travel demand Travel modes Trip surveys work travel mode choice |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUq1AM9oH5QsZQiH3psIHbsdXxcViAufByoxM2yHRuQdjcoG5D6A_q_O-MYlAoJLr1Gjhx7xuN5zvg9Qn7okodgXSykt3haJSEONpUqeGWr0smgpLBJbEKdn9fX1_pyJPWFNWEDPfAwcYeNrBsuok-0JJAOWuG10F6xEKrIpolsu1R6BKZSDK7ZVEuVaYZYqQ9n8zmM6ADVwg8giVACFX9GW1Fi7M8SKy_ictpsTj6SrZwl0tnwdZ_Iu7D6TD6MuAO_kD8XK3oKILJD8u4lFrXQC1j-y3yvkraRnqVCyUAzh-oNPUty0Wua6gSopUf2d8BLlP--OVvctN1df7ukfUsvO_yT01M8VKdXqFW0oKifRue3LcSYbfLr5PhqflpkTYXCA5LrCylcNbXMSsgrAg_CB2sRMzjOA4PdugnMMe8gjYyx5hFsJyrrGlc6JTyPvPpKNlbtKuwQqnXjbLSNh6RIAPKwrpY1i9p624go6wnhT9NrfCYcR92LhUnAo9RmsIlBm5hskwn5-fzS_cC38XrzI7Tbc1Mky04PwIVMdiHzlgtNyDZafdQfwCZAWhOy9-QGJq_steEKUhzw6Urv_o--v5FNHM9wqLNHNvruIXwn7_1jf7fu9pNT_wXze_lO priority: 102 providerName: Directory of Open Access Journals |
| Title | On Hyperparameter Optimization of Machine Learning Methods Using a Bayesian Optimization Algorithm to Predict Work Travel Mode Choice |
| URI | https://ieeexplore.ieee.org/document/10049559 https://www.proquest.com/docview/2781848539 https://doaj.org/article/d58d24fc52684882a4c949c71ee3f166 |
| Volume | 11 |
| WOSCitedRecordID | wos000943309600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZN6KE99JnSbdOgQ4_1xpallXXcLAm5bJJDCrkJPUZJYHcdvE6hl9zyv6uRlWVLaaEXY4yEbT49ZkYz30fIV1UyAGNDIZzBaJWI66CvZcFqU5dWgBTcJLEJeXbWXF2pi1ysnmphACAln8EYb9NZvm_dPYbKDpHdDBnTdsiOlJOhWGsTUEEFCSVkZhaqSnU4nc3iT4xRIHwc7QbJUeRna_dJJP1ZVeWPpTjtLyev__PL3pBX2ZCk0wH5t-QZrN6Rl1v0gu_J4_mKnkY_s0N-7yXmvdDzuEIsc-klbQOdp1xKoJlm9ZrOk6L0mqZUAmrokfkJWGf5e8_p4rrtbvubJe1betHhYU9PMe5OL1HOaEFRYo3Obtq4DO2R7yfHl7PTIssuFC46e30huK0npjIimh7AgDswBt0KyxhUcUP3UNnK2WhphtCwEOHltbHellZyxwKrP5DdVbuCj4Qq5a0JxrtoN_HonBjbiKYKyjjjeRDNiLAnOLTLnOQojbHQyTcplR4w1IihzhiOyLdNp7uBkuPfzY8Q501T5NNODyKAOk9P7UXjGQ8ukd9Ep8Nwp7hysgKoQzWZjMgegr71vgHvEdl_GjY6T_61ZjJaQXHY1-rTX7p9Ji_wE4dQzj7Z7bt7-EKeux_97bo7SHGBeJ0_HB-kMf4L8B35mg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxELWgIAEHPosIFPCBI5vueu3s-phGVEE0aQ9B6s3yx7itlGTRZlupP4D_jcfrRkEIJG6rla316tnjmbHnPUI-yZwBaOMzYTVmq0Swg66sMlbqMjcCKsF1FJuo5vP6_FyepWL1WAsDAPHyGQzxMZ7lu8ZeY6rsENnNkDHtPnkgOGd5X661TamghoQUVeIWKnJ5OJ5Mwm8MUSJ8GDyHiqPMz87-E2n6k67KH8Y47jDHz_5zbM_J0-RK0nGP_QtyD9YvyZMdgsFX5Ofpmk5DpNkiw_cKb77Q02AjVqn4kjaezuJtSqCJaPWCzqKm9IbGywRU0yN9C1hp-XvP8fKiaa-6yxXtGnrW4nFPRzHzThcoaLSkKLJGJ5dNMET75Pvxl8VkmiXhhcyGcK_LBDflSBdaBOcDGHALWmNgYRiDImzpDgpTWBN8Te9r5gPAvNTGmdxU3DLPytdkb92s4Q2hUjqjvXY2eE48hCfa1KIuvNRWO-5FPSDsDg5lEys5imMsVYxOcql6DBViqBKGA_J52-lHT8rx7-ZHiPO2KTJqxxcBQJUWqHKidox7G-lvQtihuZVc2qoAKH0xGg3IPoK-870e7wE5uJs2Ki3_jWJV8IPCxC_l2790-0geTRezE3Xydf7tHXmMw-0TOwdkr2uv4T15aG-6q037Ic7xX0ei-rs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Hyperparameter+Optimization+of+Machine+Learning+Methods+Using+a+Bayesian+Optimization+Algorithm+to+Predict+Work+Travel+Mode+Choice&rft.jtitle=IEEE+access&rft.au=Aghaabbasi%2C+Mahdi&rft.au=Ali%2C+Mujahid&rft.au=Jasinski%2C+Michal&rft.au=Leonowicz%2C+Zbigniew&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=19762&rft.epage=19774&rft_id=info:doi/10.1109%2FACCESS.2023.3247448&rft.externalDocID=10049559 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |