AEDNet: An Attention-Based Encoder-Decoder Network for Urban Water Extraction From High Spatial Resolution Remote Sensing Images

Accurate water extraction from urban remote sensing images holds great significance in assisting the formulation of river and lake management policies and ensuring the sustainable development of urban water resources. However, urban high-resolution remote sensing images encompass complex spatial and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of selected topics in applied earth observations and remote sensing Ročník 17; s. 1286 - 1298
Hlavní autoři: Song, Yanjiao, Rui, Xiaoping, Li, Junjie
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1939-1404, 2151-1535
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate water extraction from urban remote sensing images holds great significance in assisting the formulation of river and lake management policies and ensuring the sustainable development of urban water resources. However, urban high-resolution remote sensing images encompass complex spatial and semantic information, which leads to disparities between the extracted water body features based on local and global information, consequently affecting the accuracy of urban water extraction. To tackle this issue, an attention-based encoder-decoder network was proposed. In this network, the backbone employing atrous convolution (AC) facilitated the acquisition of low-level and high-level features of urban remote sensing images at various scales. Integrated with the attention mechanism, the encoder-decoder structure extracted global features in both the spatial and channel domains. Subsequently, these two types of features were merged to yield the urban water segmentation. Moreover, considering both intersection over union and class weights, a joint loss function (JLF) was introduced to further enhance the accuracy of urban water extraction. Experimental results demonstrated the strong performance of the proposed method on both GID and LoveDA datasets.
AbstractList Accurate water extraction from urban remote sensing images holds great significance in assisting the formulation of river and lake management policies and ensuring the sustainable development of urban water resources. However, urban high-resolution remote sensing images encompass complex spatial and semantic information, which leads to disparities between the extracted water body features based on local and global information, consequently affecting the accuracy of urban water extraction. To tackle this issue, an attention-based encoder–decoder network was proposed. In this network, the backbone employing atrous convolution (AC) facilitated the acquisition of low-level and high-level features of urban remote sensing images at various scales. Integrated with the attention mechanism, the encoder–decoder structure extracted global features in both the spatial and channel domains. Subsequently, these two types of features were merged to yield the urban water segmentation. Moreover, considering both intersection over union and class weights, a joint loss function (JLF) was introduced to further enhance the accuracy of urban water extraction. Experimental results demonstrated the strong performance of the proposed method on both GID and LoveDA datasets.
Author Rui, Xiaoping
Li, Junjie
Song, Yanjiao
Author_xml – sequence: 1
  givenname: Yanjiao
  orcidid: 0009-0004-3016-2593
  surname: Song
  fullname: Song, Yanjiao
  email: songyanjiao2000@163.com
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Xiaoping
  orcidid: 0000-0002-7764-4272
  surname: Rui
  fullname: Rui, Xiaoping
  email: ruixp@hhu.edu.cn
  organization: School of Earth Science and Engineering, Hohai University, Nanjing, China
– sequence: 3
  givenname: Junjie
  orcidid: 0009-0008-3740-8452
  surname: Li
  fullname: Li, Junjie
  email: junjieli@whu.edu.cn
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
BookMark eNqFUU2P0zAQtdAi0S38AjhY4pzir3yYW9jtskUrkNpdcbQmzqSkpHaxXQE3fjpps0KIC6eRZua9N_PeJblw3iEhLzlbcM70mw-b-3q9WQgm5EJKWalKPSEzwXOe8VzmF2TGtdQZV0w9I5cx7hgrRKnljPyql9cfMb2ltaN1SuhS7132DiK2dOmsbzFk13iudNz77sNX2vlAH0IDjn6GNPaXP1IAewLSm-D39LbffqGbA6QeBrrG6IfjebjGvU9IN-hi77Z0tYctxufkaQdDxBePdU4ebpb3V7fZ3af3q6v6LrOK6ZSNXwgFjWzLgne2Eh3rdJeDbHPgNgcooGJCQNcKLHSjWYOlUpZD0RRKyJLJOVlNvK2HnTmEfg_hp_HQm3PDh62BkHo7oCkbWza6ajWWhbIdr4qukazU7ahSctmOXK8nrkPw344Yk9n5Y3Dj-UZoJrhQbLR9TuS0ZYOPMWD3R5Uzc4rNTLGZU2zmMbYRpf9B2T7Byb_R5H74D_bVhO0R8S81KYuqVPI3-N6oiw
CODEN IJSTHZ
CitedBy_id crossref_primary_10_3390_rs17173062
crossref_primary_10_3390_rs17111868
crossref_primary_10_3390_s24134050
crossref_primary_10_1016_j_jag_2025_104596
crossref_primary_10_1109_JSTARS_2024_3522997
crossref_primary_10_1109_JSTARS_2024_3509712
crossref_primary_10_1109_TGRS_2024_3524058
crossref_primary_10_1109_JSTARS_2024_3524753
Cites_doi 10.3390/rs11111351
10.1080/15481603.2023.2166396
10.1109/tgrs.2021.3131331
10.1007/978-3-030-01234-2_49
10.1007/978-3-030-01234-2_1
10.1080/17538947.2021.1995513
10.1109/CVPR.2017.660
10.1109/CVPR.2019.00154
10.1016/j.jag.2021.102497
10.1016/j.apacoust.2020.107714
10.1080/01431161.2022.2136505
10.1109/tgrs.2023.3276703
10.1109/CVPR.2019.00326
10.1080/15481603.2022.2142626
10.1109/CVPR.2016.90
10.1016/j.rse.2018.09.016
10.1109/ACCESS.2019.2908232
10.1109/ICCV.2019.00390
10.1016/j.rse.2019.111322
10.1117/1.JRS.15.042605
10.1109/jstars.2022.3215696
10.1109/CVPR.2018.00745
10.3390/w12071928
10.1109/CVPR.2019.00172
10.1016/j.jhydrol.2022.128202
10.1109/CVPR.2015.7298965
10.1016/j.isprsjprs.2022.08.019
10.1080/01431169608948714
10.1016/j.rse.2020.111706
10.3390/s19122769
10.1007/978-3-319-24574-4_28
10.1109/TPAMI.2017.2699184
10.3390/rs13163122
10.1109/CVPR.2018.00813
10.1109/CVPR.2018.00747
10.1080/17538947.2023.2166606
10.1109/JSTARS.2020.2971783
10.1109/cvpr.2018.00464
10.1109/JSTARS.2019.2929601
10.1109/jstars.2021.3104382
10.1016/j.jag.2022.103103
10.3390/ijgi9040189
10.3390/rs13101912
10.3390/s16071075
10.1109/tgrs.2022.3207551
10.1109/tgrs.2023.3243954
10.1038/nature20584
10.1109/jstars.2022.3185245
10.1016/j.rse.2013.08.029
10.1080/01431161.2017.1341667
10.3390/s150613763
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2023.3338484
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) Online
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 1298
ExternalDocumentID oai_doaj_org_article_7bc7b98d9e764cf186fb3079da6a713d
10_1109_JSTARS_2023_3338484
10336874
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 42376180
  funderid: 10.13039/501100001809
– fundername: Key Laboratory of Land Satellite Remote Sensing Application
– fundername: Ministry of Natural Resources of the People's Republic of China
  grantid: KLSMNR-G202212
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c409t-53524ab3d761fc82f0f9f5a3d5a1c5aa6a8022afd2e69b90be744c1a6b6423703
IEDL.DBID DOA
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001127459900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:51:52 EDT 2025
Fri Jul 25 10:16:55 EDT 2025
Tue Nov 18 22:15:17 EST 2025
Sat Nov 29 04:51:20 EST 2025
Wed Aug 27 02:36:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-53524ab3d761fc82f0f9f5a3d5a1c5aa6a8022afd2e69b90be744c1a6b6423703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-3016-2593
0000-0002-7764-4272
0009-0008-3740-8452
OpenAccessLink https://doaj.org/article/7bc7b98d9e764cf186fb3079da6a713d
PQID 2902124015
PQPubID 75722
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_JSTARS_2023_3338484
proquest_journals_2902124015
ieee_primary_10336874
crossref_primary_10_1109_JSTARS_2023_3338484
doaj_primary_oai_doaj_org_article_7bc7b98d9e764cf186fb3079da6a713d
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
Xu (ref7) 2005; 9
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Longfei (ref5) 2021; 33
ref49
ref8
ref9
ref4
ref3
ref6
ref40
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
Chen (ref30) 2017
ref24
ref23
ref26
Wang (ref50) 2021
ref25
ref20
ref22
ref21
Chen (ref28) 2015
ref27
ref29
References_xml – ident: ref12
  doi: 10.3390/rs11111351
– ident: ref35
  doi: 10.1080/15481603.2023.2166396
– ident: ref56
  doi: 10.1109/tgrs.2021.3131331
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  year: 2015
  ident: ref28
  article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs
– ident: ref31
  doi: 10.1007/978-3-030-01234-2_49
– ident: ref41
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref43
  doi: 10.1080/17538947.2021.1995513
– ident: ref27
  doi: 10.1109/CVPR.2017.660
– ident: ref53
  doi: 10.1109/CVPR.2019.00154
– ident: ref20
  doi: 10.1016/j.jag.2021.102497
– ident: ref15
  doi: 10.1016/j.apacoust.2020.107714
– volume: 33
  start-page: 9
  issue: 1
  year: 2021
  ident: ref5
  article-title: A review of remote sensing image water extraction
  publication-title: Remote Sens. Natural Resour.
– ident: ref34
  doi: 10.1080/01431161.2022.2136505
– volume: 9
  issue: 5
  year: 2005
  ident: ref7
  article-title: A study on information extraction of water body with the modified normalized difference water index (MNDWI)
  publication-title: J. Remote Sens.
– ident: ref46
  doi: 10.1109/tgrs.2023.3276703
– ident: ref42
  doi: 10.1109/CVPR.2019.00326
– ident: ref22
  doi: 10.1080/15481603.2022.2142626
– ident: ref48
  doi: 10.1109/CVPR.2016.90
– start-page: 1
  volume-title: Proc. Neural Inf. Process. Syst. Track Datasets Benchmarks
  year: 2021
  ident: ref50
  article-title: LoveDA: A remote sensing land-cover dataset for domain adaptive semantic segmentation
– ident: ref3
  doi: 10.1016/j.rse.2018.09.016
– ident: ref14
  doi: 10.1109/ACCESS.2019.2908232
– start-page: 1
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  year: 2017
  ident: ref30
  article-title: Rethinking atrous convolution for semantic image segmentation
– ident: ref54
  doi: 10.1109/ICCV.2019.00390
– ident: ref49
  doi: 10.1016/j.rse.2019.111322
– ident: ref17
  doi: 10.1117/1.JRS.15.042605
– ident: ref24
  doi: 10.1109/jstars.2022.3215696
– ident: ref40
  doi: 10.1109/CVPR.2018.00745
– ident: ref13
  doi: 10.3390/w12071928
– ident: ref52
  doi: 10.1109/CVPR.2019.00172
– ident: ref10
  doi: 10.1016/j.jhydrol.2022.128202
– ident: ref25
  doi: 10.1109/CVPR.2015.7298965
– ident: ref11
  doi: 10.1016/j.isprsjprs.2022.08.019
– ident: ref6
  doi: 10.1080/01431169608948714
– ident: ref2
  doi: 10.1016/j.rse.2020.111706
– ident: ref19
  doi: 10.3390/s19122769
– ident: ref26
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref29
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref37
  doi: 10.3390/rs13163122
– ident: ref39
  doi: 10.1109/CVPR.2018.00813
– ident: ref51
  doi: 10.1109/CVPR.2018.00747
– ident: ref4
  doi: 10.1080/17538947.2023.2166606
– ident: ref32
  doi: 10.1109/JSTARS.2020.2971783
– ident: ref47
  doi: 10.1109/cvpr.2018.00464
– ident: ref33
  doi: 10.1109/JSTARS.2019.2929601
– ident: ref55
  doi: 10.1109/jstars.2021.3104382
– ident: ref45
  doi: 10.1016/j.jag.2022.103103
– ident: ref21
  doi: 10.3390/ijgi9040189
– ident: ref36
  doi: 10.3390/rs13101912
– ident: ref16
  doi: 10.3390/s16071075
– ident: ref23
  doi: 10.1109/tgrs.2022.3207551
– ident: ref38
  doi: 10.1109/tgrs.2023.3243954
– ident: ref1
  doi: 10.1038/nature20584
– ident: ref44
  doi: 10.1109/jstars.2022.3185245
– ident: ref8
  doi: 10.1016/j.rse.2013.08.029
– ident: ref9
  doi: 10.1080/01431161.2017.1341667
– ident: ref18
  doi: 10.3390/s150613763
SSID ssj0062793
Score 2.416381
Snippet Accurate water extraction from urban remote sensing images holds great significance in assisting the formulation of river and lake management policies and...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1286
SubjectTerms Accuracy
Atrous convolution (AC)
attention mechanism
Coders
Convolution
Data mining
Feature extraction
High resolution
Image acquisition
Image resolution
Indexes
joint loss function (JLF)
Lake management
Lakes
Remote sensing
Semantics
Spatial discrimination
Spatial resolution
Sustainable development
Urban areas
urban water extraction
Water bodies
Water resources
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoBRIXyqOIpQX5wJEseTh-cEvpLnBZIUpFb5afFRLNomyK6K0_nRk7W4EQSJxiRbbi6BuPZ-yZbwh5UdVCOovRDQ2PBZMsFFYxWRjOjHNVjN6UqdiEWK3k2Zn6MCWrp1yYEEIKPgtzbKa7fL92l3hUBiu8abgUbIfsCMFzstZW7fJaJIZdMEhUgZwxE8VQVapXIOPdx5M5VgqfN-CTMcl-24YSW_9UXuUPnZw2muXef07xPrk3WZS0yyLwgNwK_UNy522q2Hv1iFx3i-NVGF_TrqfdOOboxuIINi9PFz1mtA_FcUhPusox4RQMWXo6WNPTz2CKDnTxYxxyAgRdDusLisEhFIsZg_BSvADI4gtNAD7QEwyK78_p-wtQVpt9crpcfHrzrpjKLhQOnL2xQMIXZmzjBa-ik3Uso4qtaXxrKtcaww2m55ro68CVVaUNgjFXGW45xtiUzWOy26_78IRQEADvnWt9KQOLUUjro7XchqaxXCg1I_UWBe0mTnIsjfFVJ9-kVDpDpxE6PUE3Iy9vBn3LlBz_7n6E8N50RT7t9AJw09Py1MI6YZX0KgjOXKwkjxa0n_Lwt-DG-xnZR6x_-V6GeUYOt9Kip8W_0bVC3nxwXNunfxl2QO7CFFk-yjkku-NwGZ6R2-77-GUzPE9y_RPVX_U-
  priority: 102
  providerName: IEEE
Title AEDNet: An Attention-Based Encoder-Decoder Network for Urban Water Extraction From High Spatial Resolution Remote Sensing Images
URI https://ieeexplore.ieee.org/document/10336874
https://www.proquest.com/docview/2902124015
https://doaj.org/article/7bc7b98d9e764cf186fb3079da6a713d
Volume 17
WOSCitedRecordID wos001127459900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXVKCIhVL5wJG0Sez4wS2lu8BlhSgVvVl-IiSaomyK4MZPZ8bOVkVIcOGUh5I48fdl7LFm5iPkedNK5R1GNzCRKq54rJzmqrKCW--blIKts9iEXK_V-bl-d0PqC2PCSnng0nFH0nnptAo6SsF9apRIDnipgxUWHKyA1hcOt85UscGiBdrNNYaaWh8Byfv3p4coFX7IwCnjiv82DuVy_bO-yh9GOY80q11yb54i0r682n1yKw4PyJ3XWYL3x0Pys1-erOP0kvYD7aephCtWxzAaBbocMEV9rE5i3tJ1CfKmMDOlZ6OzA_0Ic8uRLr9PY8looKvx8oJitAdFdWJgI8UV_cJH2AUkIz3FKPfhE317AdZns0fOVssPr95Us45C5cF7myqs4MKtY0GKJnnVpjrp1FkWOtv4zkJHYr6tTaGNQjtduyg5940VTmDQTM0ekZ3hcoiPCQVEQ_C-C7WKPCWpXEjOCRcZc0JqvSDttleNn4uMo9bFF5OdjVqbAoVBKMwMxYK8uL7pa6mx8ffLjxGu60uxQHY-AbQxM23Mv2izIHsI9o32GBNKwsP3t-ib-W_emFZjIXzwRLsn_6Ptp-QufA8vCzn7ZGcar-Izctt_mz5vxoNM5IOciPgLLVz3Xw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaggODCs4iFAj5wxEsejh_cUrpLK0qEaCt6s_xESDSLsimCGz8dj52tQAgkTrEiW3H0jccz9sw3CD0rKy6sgeiGmgVCBfXESCqIZlRbW4bgdJGKTfCuE6en8t2UrJ5yYbz3KfjMz6GZ7vLdyp7DUVlc4XXNBKeX0ZWG0qrI6Vobxcsqnjh2o0kiCbDGTCRDZSFfRClv3x_NoVb4vI5eGRX0t40o8fVPBVb-0Mppq1ne-s9J3kY3J5sSt1kI7qBLvr-Lrr1ONXu_30M_2sVe58eXuO1xO445vpHsxu3L4UUPOe0D2fPpibscFY6jKYtPBqN7_CEaowNefBuHnAKBl8PqDEN4CIZyxlF8MVwBZAGOzQi9x0cQFt9_xAdnUV2tt9HJcnH8ap9MhReIje7eSIDyhWpTO87KYEUViiBDo2vX6NI2WjMNCbo6uMozaWRhPKfUlpoZBlE2RX0fbfWr3j9AOIqAc9Y2rhCehsCFccEYZnxdG8alnKFqg4KyEys5FMf4rJJ3UkiVoVMAnZqgm6HnF4O-ZFKOf3ffBXgvugKjdnoRcVPTAlXcWG6kcNJzRm0oBQsm6j_p4t9GR97N0DZg_cv3MswztLORFjUt_7WqJDDnR9e1efiXYU_R9f3jt4fq8KB78wjdiNOl-WBnB22Nw7l_jK7ar-On9fAkyfhPuJr4hQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AEDNet%3A+An+Attention-Based+Encoder%E2%80%93Decoder+Network+for+Urban+Water+Extraction+From+High+Spatial+Resolution+Remote+Sensing+Images&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Song%2C+Yanjiao&rft.au=Rui%2C+Xiaoping&rft.au=Li%2C+Junjie&rft.date=2024&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=17&rft.spage=1286&rft.epage=1298&rft_id=info:doi/10.1109%2FJSTARS.2023.3338484&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2023_3338484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon