AEDNet: An Attention-Based Encoder-Decoder Network for Urban Water Extraction From High Spatial Resolution Remote Sensing Images
Accurate water extraction from urban remote sensing images holds great significance in assisting the formulation of river and lake management policies and ensuring the sustainable development of urban water resources. However, urban high-resolution remote sensing images encompass complex spatial and...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing Jg. 17; S. 1286 - 1298 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1939-1404, 2151-1535 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Accurate water extraction from urban remote sensing images holds great significance in assisting the formulation of river and lake management policies and ensuring the sustainable development of urban water resources. However, urban high-resolution remote sensing images encompass complex spatial and semantic information, which leads to disparities between the extracted water body features based on local and global information, consequently affecting the accuracy of urban water extraction. To tackle this issue, an attention-based encoder-decoder network was proposed. In this network, the backbone employing atrous convolution (AC) facilitated the acquisition of low-level and high-level features of urban remote sensing images at various scales. Integrated with the attention mechanism, the encoder-decoder structure extracted global features in both the spatial and channel domains. Subsequently, these two types of features were merged to yield the urban water segmentation. Moreover, considering both intersection over union and class weights, a joint loss function (JLF) was introduced to further enhance the accuracy of urban water extraction. Experimental results demonstrated the strong performance of the proposed method on both GID and LoveDA datasets. |
|---|---|
| AbstractList | Accurate water extraction from urban remote sensing images holds great significance in assisting the formulation of river and lake management policies and ensuring the sustainable development of urban water resources. However, urban high-resolution remote sensing images encompass complex spatial and semantic information, which leads to disparities between the extracted water body features based on local and global information, consequently affecting the accuracy of urban water extraction. To tackle this issue, an attention-based encoder–decoder network was proposed. In this network, the backbone employing atrous convolution (AC) facilitated the acquisition of low-level and high-level features of urban remote sensing images at various scales. Integrated with the attention mechanism, the encoder–decoder structure extracted global features in both the spatial and channel domains. Subsequently, these two types of features were merged to yield the urban water segmentation. Moreover, considering both intersection over union and class weights, a joint loss function (JLF) was introduced to further enhance the accuracy of urban water extraction. Experimental results demonstrated the strong performance of the proposed method on both GID and LoveDA datasets. |
| Author | Rui, Xiaoping Li, Junjie Song, Yanjiao |
| Author_xml | – sequence: 1 givenname: Yanjiao orcidid: 0009-0004-3016-2593 surname: Song fullname: Song, Yanjiao email: songyanjiao2000@163.com organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China – sequence: 2 givenname: Xiaoping orcidid: 0000-0002-7764-4272 surname: Rui fullname: Rui, Xiaoping email: ruixp@hhu.edu.cn organization: School of Earth Science and Engineering, Hohai University, Nanjing, China – sequence: 3 givenname: Junjie orcidid: 0009-0008-3740-8452 surname: Li fullname: Li, Junjie email: junjieli@whu.edu.cn organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China |
| BookMark | eNqFUU2P0zAQtdAi0S38AjhY4pzir3yYW9jtskUrkNpdcbQmzqSkpHaxXQE3fjpps0KIC6eRZua9N_PeJblw3iEhLzlbcM70mw-b-3q9WQgm5EJKWalKPSEzwXOe8VzmF2TGtdQZV0w9I5cx7hgrRKnljPyql9cfMb2ltaN1SuhS7132DiK2dOmsbzFk13iudNz77sNX2vlAH0IDjn6GNPaXP1IAewLSm-D39LbffqGbA6QeBrrG6IfjebjGvU9IN-hi77Z0tYctxufkaQdDxBePdU4ebpb3V7fZ3af3q6v6LrOK6ZSNXwgFjWzLgne2Eh3rdJeDbHPgNgcooGJCQNcKLHSjWYOlUpZD0RRKyJLJOVlNvK2HnTmEfg_hp_HQm3PDh62BkHo7oCkbWza6ajWWhbIdr4qukazU7ahSctmOXK8nrkPw344Yk9n5Y3Dj-UZoJrhQbLR9TuS0ZYOPMWD3R5Uzc4rNTLGZU2zmMbYRpf9B2T7Byb_R5H74D_bVhO0R8S81KYuqVPI3-N6oiw |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_3390_rs17173062 crossref_primary_10_3390_rs17111868 crossref_primary_10_3390_s24134050 crossref_primary_10_1016_j_jag_2025_104596 crossref_primary_10_1109_JSTARS_2024_3522997 crossref_primary_10_1109_JSTARS_2024_3509712 crossref_primary_10_1109_TGRS_2024_3524058 crossref_primary_10_1109_JSTARS_2024_3524753 |
| Cites_doi | 10.3390/rs11111351 10.1080/15481603.2023.2166396 10.1109/tgrs.2021.3131331 10.1007/978-3-030-01234-2_49 10.1007/978-3-030-01234-2_1 10.1080/17538947.2021.1995513 10.1109/CVPR.2017.660 10.1109/CVPR.2019.00154 10.1016/j.jag.2021.102497 10.1016/j.apacoust.2020.107714 10.1080/01431161.2022.2136505 10.1109/tgrs.2023.3276703 10.1109/CVPR.2019.00326 10.1080/15481603.2022.2142626 10.1109/CVPR.2016.90 10.1016/j.rse.2018.09.016 10.1109/ACCESS.2019.2908232 10.1109/ICCV.2019.00390 10.1016/j.rse.2019.111322 10.1117/1.JRS.15.042605 10.1109/jstars.2022.3215696 10.1109/CVPR.2018.00745 10.3390/w12071928 10.1109/CVPR.2019.00172 10.1016/j.jhydrol.2022.128202 10.1109/CVPR.2015.7298965 10.1016/j.isprsjprs.2022.08.019 10.1080/01431169608948714 10.1016/j.rse.2020.111706 10.3390/s19122769 10.1007/978-3-319-24574-4_28 10.1109/TPAMI.2017.2699184 10.3390/rs13163122 10.1109/CVPR.2018.00813 10.1109/CVPR.2018.00747 10.1080/17538947.2023.2166606 10.1109/JSTARS.2020.2971783 10.1109/cvpr.2018.00464 10.1109/JSTARS.2019.2929601 10.1109/jstars.2021.3104382 10.1016/j.jag.2022.103103 10.3390/ijgi9040189 10.3390/rs13101912 10.3390/s16071075 10.1109/tgrs.2022.3207551 10.1109/tgrs.2023.3243954 10.1038/nature20584 10.1109/jstars.2022.3185245 10.1016/j.rse.2013.08.029 10.1080/01431161.2017.1341667 10.3390/s150613763 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
| DOI | 10.1109/JSTARS.2023.3338484 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 1298 |
| ExternalDocumentID | oai_doaj_org_article_7bc7b98d9e764cf186fb3079da6a713d 10_1109_JSTARS_2023_3338484 10336874 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42376180 funderid: 10.13039/501100001809 – fundername: Key Laboratory of Land Satellite Remote Sensing Application – fundername: Ministry of Natural Resources of the People's Republic of China grantid: KLSMNR-G202212 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c409t-53524ab3d761fc82f0f9f5a3d5a1c5aa6a8022afd2e69b90be744c1a6b6423703 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001127459900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Fri Oct 03 12:51:52 EDT 2025 Fri Jul 25 10:16:55 EDT 2025 Tue Nov 18 22:15:17 EST 2025 Sat Nov 29 04:51:20 EST 2025 Wed Aug 27 02:36:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-53524ab3d761fc82f0f9f5a3d5a1c5aa6a8022afd2e69b90be744c1a6b6423703 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0004-3016-2593 0000-0002-7764-4272 0009-0008-3740-8452 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10336874 |
| PQID | 2902124015 |
| PQPubID | 75722 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSTARS_2023_3338484 proquest_journals_2902124015 ieee_primary_10336874 crossref_primary_10_1109_JSTARS_2023_3338484 doaj_primary_oai_doaj_org_article_7bc7b98d9e764cf186fb3079da6a713d |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref56 ref15 Xu (ref7) 2005; 9 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Longfei (ref5) 2021; 33 ref49 ref8 ref9 ref4 ref3 ref6 ref40 ref35 ref34 ref37 ref36 ref31 ref33 ref32 ref2 ref1 ref39 ref38 Chen (ref30) 2017 ref24 ref23 ref26 Wang (ref50) 2021 ref25 ref20 ref22 ref21 Chen (ref28) 2015 ref27 ref29 |
| References_xml | – ident: ref12 doi: 10.3390/rs11111351 – ident: ref35 doi: 10.1080/15481603.2023.2166396 – ident: ref56 doi: 10.1109/tgrs.2021.3131331 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations year: 2015 ident: ref28 article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs – ident: ref31 doi: 10.1007/978-3-030-01234-2_49 – ident: ref41 doi: 10.1007/978-3-030-01234-2_1 – ident: ref43 doi: 10.1080/17538947.2021.1995513 – ident: ref27 doi: 10.1109/CVPR.2017.660 – ident: ref53 doi: 10.1109/CVPR.2019.00154 – ident: ref20 doi: 10.1016/j.jag.2021.102497 – ident: ref15 doi: 10.1016/j.apacoust.2020.107714 – volume: 33 start-page: 9 issue: 1 year: 2021 ident: ref5 article-title: A review of remote sensing image water extraction publication-title: Remote Sens. Natural Resour. – ident: ref34 doi: 10.1080/01431161.2022.2136505 – volume: 9 issue: 5 year: 2005 ident: ref7 article-title: A study on information extraction of water body with the modified normalized difference water index (MNDWI) publication-title: J. Remote Sens. – ident: ref46 doi: 10.1109/tgrs.2023.3276703 – ident: ref42 doi: 10.1109/CVPR.2019.00326 – ident: ref22 doi: 10.1080/15481603.2022.2142626 – ident: ref48 doi: 10.1109/CVPR.2016.90 – start-page: 1 volume-title: Proc. Neural Inf. Process. Syst. Track Datasets Benchmarks year: 2021 ident: ref50 article-title: LoveDA: A remote sensing land-cover dataset for domain adaptive semantic segmentation – ident: ref3 doi: 10.1016/j.rse.2018.09.016 – ident: ref14 doi: 10.1109/ACCESS.2019.2908232 – start-page: 1 volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. year: 2017 ident: ref30 article-title: Rethinking atrous convolution for semantic image segmentation – ident: ref54 doi: 10.1109/ICCV.2019.00390 – ident: ref49 doi: 10.1016/j.rse.2019.111322 – ident: ref17 doi: 10.1117/1.JRS.15.042605 – ident: ref24 doi: 10.1109/jstars.2022.3215696 – ident: ref40 doi: 10.1109/CVPR.2018.00745 – ident: ref13 doi: 10.3390/w12071928 – ident: ref52 doi: 10.1109/CVPR.2019.00172 – ident: ref10 doi: 10.1016/j.jhydrol.2022.128202 – ident: ref25 doi: 10.1109/CVPR.2015.7298965 – ident: ref11 doi: 10.1016/j.isprsjprs.2022.08.019 – ident: ref6 doi: 10.1080/01431169608948714 – ident: ref2 doi: 10.1016/j.rse.2020.111706 – ident: ref19 doi: 10.3390/s19122769 – ident: ref26 doi: 10.1007/978-3-319-24574-4_28 – ident: ref29 doi: 10.1109/TPAMI.2017.2699184 – ident: ref37 doi: 10.3390/rs13163122 – ident: ref39 doi: 10.1109/CVPR.2018.00813 – ident: ref51 doi: 10.1109/CVPR.2018.00747 – ident: ref4 doi: 10.1080/17538947.2023.2166606 – ident: ref32 doi: 10.1109/JSTARS.2020.2971783 – ident: ref47 doi: 10.1109/cvpr.2018.00464 – ident: ref33 doi: 10.1109/JSTARS.2019.2929601 – ident: ref55 doi: 10.1109/jstars.2021.3104382 – ident: ref45 doi: 10.1016/j.jag.2022.103103 – ident: ref21 doi: 10.3390/ijgi9040189 – ident: ref36 doi: 10.3390/rs13101912 – ident: ref16 doi: 10.3390/s16071075 – ident: ref23 doi: 10.1109/tgrs.2022.3207551 – ident: ref38 doi: 10.1109/tgrs.2023.3243954 – ident: ref1 doi: 10.1038/nature20584 – ident: ref44 doi: 10.1109/jstars.2022.3185245 – ident: ref8 doi: 10.1016/j.rse.2013.08.029 – ident: ref9 doi: 10.1080/01431161.2017.1341667 – ident: ref18 doi: 10.3390/s150613763 |
| SSID | ssj0062793 |
| Score | 2.416297 |
| Snippet | Accurate water extraction from urban remote sensing images holds great significance in assisting the formulation of river and lake management policies and... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1286 |
| SubjectTerms | Accuracy Atrous convolution (AC) attention mechanism Coders Convolution Data mining Feature extraction High resolution Image acquisition Image resolution Indexes joint loss function (JLF) Lake management Lakes Remote sensing Semantics Spatial discrimination Spatial resolution Sustainable development Urban areas urban water extraction Water bodies Water resources |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqikpcENAiFgrygWPdxo7jxNxSuguVqlXVUujN8rNCoinKBgQ3fjozcbYqQoILpzyUxMnMl3lY428IeQUxaOmSTozzqJgEj8mcsg1rQimCh_iZj4w3H07q5bK5vNSnd1p9YU1YpgfOgjuona-dboKOtZI-8UYlB7jUwSoLCVZA6wuH62Qq22AlAHYTxxAv9AGAvD0738dW4fslJGWykb_5oZGuf-qv8odRHj3N4iF5MIWItM2v9ohsxO4x2Xo7tuD9sU1-tvOjZRxe07aj7TDkckV2CN4o0HmHS9R7dhTHLV3mIm8KkSm96J3t6EeILXs6_z70eUUDXfQ31xSrPSh2JwY0UpzRz3iEXdBkpOdY5d5d0eNrsD6rHXKxmL9_845NfRSYh-xtYMjgIq0rQ6148o1IBSinsmWoLPeVBUHielubgohKO124WEvpuVVOYdFMUT4hm91NF58Syr3VtagSSNBLyKu1F04UVsSkOGRuakbEWqrGTyTj2OvisxmTjUKbrAqDqjCTKmZk7_amL5lj4--XH6K6bi9FguzxBMDGTLAx_4LNjOygsu-MV5aqqeHhu2vtm-lvXhmhkQgfMtHq2f8Y-zm5D98j80TOLtkc-q_xBbnnvw2fVv3LEci_AGuR9Fs priority: 102 providerName: Directory of Open Access Journals |
| Title | AEDNet: An Attention-Based Encoder-Decoder Network for Urban Water Extraction From High Spatial Resolution Remote Sensing Images |
| URI | https://ieeexplore.ieee.org/document/10336874 https://www.proquest.com/docview/2902124015 https://doaj.org/article/7bc7b98d9e764cf186fb3079da6a713d |
| Volume | 17 |
| WOSCitedRecordID | wos001127459900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoBRIXnkVsKZUPHPESO44dc0vpLiChFaIUerP8REg0i7JpBTd-OmM7W4EQSJxiRbby-MaeGXvmG4SegA1a26gioTQIwkFjEitMS1pfM-_AfqaZ8ebDG7latWdn6u2UrJ5zYUIIOfgszFMzn-X7tbtIW2Uww-tatJLvoB0pRUnW2i67gsnMsAsGiSKJM2aiGKKVegYy3r07madK4fMafDLe8t_UUGbrn8qr_LEmZ0WzvP2fr3gH3ZosStwVEbiLroX-HrrxMlfs_X4f_egWx6swPsddj7txLNGN5AiUl8eLPmW0D-Q45CtelZhwDIYsPh2s6fFHMEUHvPg2DiUBAi-H9TlOwSE4FTMG4cXpAKCILzQB-IBPUlB8_wm_PofFarOHTpeL9y9ekansAnHg7I0kEb5wY2svBY2uZbECLBtT-8ZQ1xgDUILiN9GzIJRVlQ2Sc0eNsCLF2FT1A7Tbr_vwEGHqjJKsifDHHQc3XDlmWWVYiIKCoydmiG1R0G7iJE-lMb7o7JtUShfodIJOT9DN0NOrQV8LJce_ux8leK-6Jj7tfANw09P01NI6aVXrVZCCu0hbES2sfsrD14Ib72doL2H9y_MKzDN0sJUWPU3-jWYq8eaD49rs_2XYI3QTXpGXrZwDtDsOF-Exuu4ux8-b4TDvCxxm6f4Jy3z0MA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaggODCs4ilBXzgiJfYcZy4t5Tu0oolQrSF3iy_UiHRLMqmiN746R3b2QqEQOIUK7KVxzf2zNgz3yD0EmzQ3LSyJZR6QThoTGKErkjlcuYs2M80Mt58WpRNU52cyA9jsnrMhfHex-AzPw3NeJbvlvY8bJXBDM9zUZX8OrpRcM6ylK61XngFKyPHLpgkkgTWmJFkiGbyNUh5_fFwGmqFT3PwynjFf1NEka9_LLDyx6ocVc383n--5H10d7QpcZ2E4AG65ruH6NbbWLP34hH6Wc_2Gj_s4LrD9TCk-EayC-rL4VkXctp7sufjFTcpKhyDKYuPe6M7_BmM0R7Pfgx9SoHA8355hkN4CA7ljEF8cTgCSAIMTYDe48MQFt-d4oMzWK5Wm-h4Pjt6s0_GwgvEgrs3kED5wrXJXSloayvWZoBmoXNXaGoLrQFMUP26dcwLaWRmfMm5pVoYEaJssvwx2uiWnX-CMLValqxo4Y9bDo64tMywTDPfCgqunpggtkZB2ZGVPBTH-Kqid5JJlaBTATo1QjdBr64GfUukHP_uvhvgveoaGLXjDcBNjRNUlcaWRlZO-lJw29JKtAbWP-nga8GRdxO0GbD-5XkJ5gnaXkuLGqf_SjEZmPPBdS2e_mXYC3R7_-j9Qi0Omndb6A68Lk8bO9toY-jP_TN0034fvqz651HGLwHfRvaC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AEDNet%3A+An+Attention-Based+Encoder%E2%80%93Decoder+Network+for+Urban+Water+Extraction+From+High+Spatial+Resolution+Remote+Sensing+Images&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Song%2C+Yanjiao&rft.au=Rui%2C+Xiaoping&rft.au=Li%2C+Junjie&rft.date=2024&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=17&rft.spage=1286&rft.epage=1298&rft_id=info:doi/10.1109%2FJSTARS.2023.3338484&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2023_3338484 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |