Redefining Retinal Lesion Segmentation: A Quantum Leap With DL-UNet Enhanced Auto Encoder-Decoder for Fundus Image Analysis

The first diagnosis of diabetic retinopathy (DR) must include lesion segmentation. As it takes a lot of time and effort to label lesions, automatic segmentation methods have to be created manually. The degree of the retina's degenerative lesions determines how severe diabetic retinopathy is. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 11; S. 70853 - 70864
Hauptverfasser: Kumar, B. Naveen, Mahesh, T. R., Geetha, G., Guluwadi, Suresh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The first diagnosis of diabetic retinopathy (DR) must include lesion segmentation. As it takes a lot of time and effort to label lesions, automatic segmentation methods have to be created manually. The degree of the retina's degenerative lesions determines how severe diabetic retinopathy is. A major influence is on the early detection of illness and treatment of DR. To reliably identify the sites of related lesions and identify various abnormalities in retinal fundus pictures, deep learning algorithms are crucial. Additionally, utilizing patch-based analysis, a deep convolutional neural network is constructed. In this study, encoder-decoder neural networks along with channel-wise spatial Attention Mechanisms are proposed. The IDRiD dataset, which includes hard exudate segmentations, is used to train and evaluate the architecture. In this method, image patches are created using the sliding window technique. To determine the effectiveness of the recommended strategy, a thorough experiment was conducted on IDRiD. In order to predict the various sorts of lesions, the trained network analyses the picture patches and creates a probability map. This technique's efficacy and supremacy are confirmed by the expected accuracy of 99.94 %. The findings of this experiment show significantly enhanced performance in terms of accuracy when compared to prior research on comparable tasks.
AbstractList The first diagnosis of diabetic retinopathy (DR) must include lesion segmentation. As it takes a lot of time and effort to label lesions, automatic segmentation methods have to be created manually. The degree of the retina's degenerative lesions determines how severe diabetic retinopathy is. A major influence is on the early detection of illness and treatment of DR. To reliably identify the sites of related lesions and identify various abnormalities in retinal fundus pictures, deep learning algorithms are crucial. Additionally, utilizing patch-based analysis, a deep convolutional neural network is constructed. In this study, encoder-decoder neural networks along with channel-wise spatial Attention Mechanisms are proposed. The IDRiD dataset, which includes hard exudate segmentations, is used to train and evaluate the architecture. In this method, image patches are created using the sliding window technique. To determine the effectiveness of the recommended strategy, a thorough experiment was conducted on IDRiD. In order to predict the various sorts of lesions, the trained network analyses the picture patches and creates a probability map. This technique's efficacy and supremacy are confirmed by the expected accuracy of 99.94 %. The findings of this experiment show significantly enhanced performance in terms of accuracy when compared to prior research on comparable tasks.
Author Geetha, G.
Guluwadi, Suresh
Kumar, B. Naveen
Mahesh, T. R.
Author_xml – sequence: 1
  givenname: B. Naveen
  surname: Kumar
  fullname: Kumar, B. Naveen
  organization: Department of Computer Science and Engineering, Faculty of Engineering and Technology, JAIN (Deemed-to-be University), Bengaluru, India
– sequence: 2
  givenname: T. R.
  orcidid: 0000-0002-5589-8992
  surname: Mahesh
  fullname: Mahesh, T. R.
  organization: Department of Computer Science and Engineering, Faculty of Engineering and Technology, JAIN (Deemed-to-be University), Bengaluru, India
– sequence: 3
  givenname: G.
  surname: Geetha
  fullname: Geetha, G.
  organization: Department of Computer Science and Engineering, Faculty of Engineering and Technology, JAIN (Deemed-to-be University), Bengaluru, India
– sequence: 4
  givenname: Suresh
  orcidid: 0000-0001-7905-3014
  surname: Guluwadi
  fullname: Guluwadi, Suresh
  email: suresh.guluwadi@astu.edu.et
  organization: Department of Mechanical Engineering, Adama Science and Technology University, Adama, Ethiopia
BookMark eNp9UU1vGyEQXVWp1DTNL2gPSD2vC8vHLr1ZjtNaslI1btQjYmHWwbLBBfYQ5c8XZxMp6qFchhnmvRnee1-d-eChqj4SPCMEyy_zxWK52cwa3NAZbSRjjL6pzhsiZE05FWev7u-qy5R2uJyulHh7Xj3egoXBeee36Bay83qP1pBc8GgD2wP4rHNJvqI5-jlqn8dDedZH9Nvle3S1ru9uIKOlv9fegEXzMYeSmWAh1lfwFNEQIroevR0TWh30FtC8DHlILn2o3g56n-DyOV5Ud9fLX4vv9frHt9Vivq4NwzLXjIq27RtrjRXQYwaCCuCUWMIpBjM0Xc96ziVvBgamZ60oCtjeYsKkZaalF9Vq4rVB79QxuoOODypop54KIW6VjtmZPSjddhJTISUzhvFh0P3QW90bYUXHy6zC9XniOsbwZ4SU1S6MsXwoqaajkhNaxC1dcuoyMaQUYVDGTULmqN1eEaxO1qnJOnWyTj1bV7D0H-zLxv9HfZpQDgBeIUjbnpb6C3TTpzM
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_bspc_2025_108598
crossref_primary_10_1016_j_bspc_2024_106132
crossref_primary_10_3390_diagnostics13193053
crossref_primary_10_1007_s12065_024_00971_2
crossref_primary_10_1016_j_pdpdt_2024_104259
crossref_primary_10_3390_ani14010131
crossref_primary_10_1109_ACCESS_2025_3539372
crossref_primary_10_1007_s13748_025_00379_8
crossref_primary_10_1109_TIM_2024_3381663
crossref_primary_10_1007_s42979_024_03451_7
crossref_primary_10_1016_j_bspc_2023_105630
crossref_primary_10_1109_ACCESS_2024_3401669
crossref_primary_10_1007_s11082_023_06203_8
crossref_primary_10_1109_ACCESS_2023_3322587
crossref_primary_10_1038_s41598_024_67130_6
crossref_primary_10_1007_s00521_024_09989_0
crossref_primary_10_3389_fmed_2024_1470941
Cites_doi 10.1109/ICACCS51430.2021.9441964
10.15676/ijeei.2021.13.3.2
10.1109/ACCESS.2020.3023273
10.1109/CCECE.2019.8861897
10.1186/s12886-018-0954-4
10.1109/CHASE.2016.12
10.1007/978-3-030-43192-1_75
10.3390/math11020257
10.3844/jcssp.2018.438.452
10.1117/12.2540175
10.1109/TMI.2015.2458702
10.1117/1.JMI.6.2.025008
10.1109/CSPA.2019.8695980
10.3991/ijoe.v18i13.33985
10.1016/j.ins.2019.06.011
10.1145/3474963.3475849
10.1504/IJSISE.2018.10015063
10.1109/ACCESS.2021.3131216
10.1109/ACCESS.2019.2920616
10.3390/data3030025
10.1016/S0734-189X(87)80186-X
10.1007/978-3-030-03493-1_18
10.1016/j.bbe.2020.05.006
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3294443
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 70864
ExternalDocumentID oai_doaj_org_article_a789036994cc45ffabfbdabc6d685ecf
10_1109_ACCESS_2023_3294443
10177951
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-43677b2ddcd6eb04e636e531d1530ecf28b4b55952f4ecb476443dbd0149d4c73
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001033518000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:15 EDT 2025
Mon Jun 30 05:22:19 EDT 2025
Sat Nov 29 04:02:49 EST 2025
Tue Nov 18 21:42:25 EST 2025
Wed Aug 27 02:25:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-43677b2ddcd6eb04e636e531d1530ecf28b4b55952f4ecb476443dbd0149d4c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7905-3014
0000-0002-5589-8992
OpenAccessLink https://ieeexplore.ieee.org/document/10177951
PQID 2839513000
PQPubID 4845423
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2023_3294443
crossref_primary_10_1109_ACCESS_2023_3294443
doaj_primary_oai_doaj_org_article_a789036994cc45ffabfbdabc6d685ecf
ieee_primary_10177951
proquest_journals_2839513000
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref10
ref2
ref1
ref17
ref19
ref18
zahangir alom (ref16) 2018
vora (ref3) 2022
mohamed (ref11) 2017
ref24
ref23
ref26
ref20
ref22
ref21
ref28
ref27
ref8
ronneberger (ref7) 2015; 18
ref9
ref4
ref6
ref5
gharaibeh (ref25) 2016; 10
References_xml – ident: ref15
  doi: 10.1109/ICACCS51430.2021.9441964
– ident: ref23
  doi: 10.15676/ijeei.2021.13.3.2
– volume: 18
  start-page: 234
  year: 2015
  ident: ref7
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref12
  doi: 10.1109/ACCESS.2020.3023273
– ident: ref5
  doi: 10.1109/CCECE.2019.8861897
– ident: ref19
  doi: 10.1186/s12886-018-0954-4
– ident: ref18
  doi: 10.1109/CHASE.2016.12
– ident: ref20
  doi: 10.1007/978-3-030-43192-1_75
– ident: ref17
  doi: 10.3390/math11020257
– ident: ref2
  doi: 10.3844/jcssp.2018.438.452
– year: 2017
  ident: ref11
  publication-title: Detection and tracking of pallets using a laser rangefinder and machine learning techniques
– ident: ref26
  doi: 10.1117/12.2540175
– ident: ref14
  doi: 10.1109/TMI.2015.2458702
– ident: ref4
  doi: 10.1117/1.JMI.6.2.025008
– ident: ref6
  doi: 10.1109/CSPA.2019.8695980
– volume: 10
  start-page: 1
  year: 2016
  ident: ref25
  article-title: An effective diagnosis of diabetic retinopathy with aid of soft computing approaches
  publication-title: Energy and Power Engineering
– ident: ref24
  doi: 10.3991/ijoe.v18i13.33985
– ident: ref28
  doi: 10.1016/j.ins.2019.06.011
– ident: ref13
  doi: 10.1145/3474963.3475849
– ident: ref22
  doi: 10.1504/IJSISE.2018.10015063
– ident: ref27
  doi: 10.1109/ACCESS.2021.3131216
– year: 2018
  ident: ref16
  article-title: Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation
  publication-title: arXiv 1802 06955
– ident: ref1
  doi: 10.1109/ACCESS.2019.2920616
– ident: ref9
  doi: 10.3390/data3030025
– ident: ref8
  doi: 10.1016/S0734-189X(87)80186-X
– year: 2022
  ident: ref3
  article-title: A deep learning based approach to segment exudates in retinal fundus images using recurrent residual U-Net
  publication-title: TechRxiv
– ident: ref10
  doi: 10.1007/978-3-030-03493-1_18
– ident: ref21
  doi: 10.1016/j.bbe.2020.05.006
SSID ssj0000816957
Score 2.3595967
Snippet The first diagnosis of diabetic retinopathy (DR) must include lesion segmentation. As it takes a lot of time and effort to label lesions, automatic...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 70853
SubjectTerms Abnormalities
Algorithms
Artificial neural networks
Coders
convolutional neural network
Convolutional neural networks
Decoding
Deep learning
Diabetes
Diabetic retinopathy
Diseases
encoder-decoder network
Encoders-Decoders
Encoding
Exudation
fundus images
Image analysis
Image enhancement
Image segmentation
lesion segmentation
Lesions
Machine learning
Network analysis
Neural networks
patch generation
Retina
spatial attention mechanism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYq1EM5INqCWKDIhx4bSGzHjrltF1athFblJbhZfoVFYgNaEi798x07XrSoEly4JErsyLFnPJ6xPN-H0HdYVB0pdJ0Rx3jGypxm2pUw8XTNnLeEU64j2YSYTKrra_lnieornAnr4YH7gTvQIVOTcimZtaysa21q47Sx3PGq9LYO1jcXcimYija4KrgsRYIZKnJ5MByNoEf7gS18nxLJGKMvlqKI2J8oVv6zy3GxGa-jteQl4mH_d5_RB998QatL2IFf0d8z73wd6R3wWchbhvonPux94XN_M0spRc0hHuLTDoavm0GxfsBXt-0UH51klxPf4uNmGk8A4GHX3sNTSHCfZ0c-3jH4s3jcBW4P_HsGdgcvEEw20OX4-GL0K0tMCpmF-K3NGOVCGOKcddybnHkQgYfZ58De5TCIpDLMQGxRkpp5a5gAL4k640L85JgVdBOtNPeN30KYmIBY5y1cIXLLpSbS0kILYstSm4oOEFkMqrIJZjywXdypGG7kUvWSUEESKkligH48f_TQo2y8Xv1nkNZz1QCRHV-A4qikOOotxRmgjSDrpfYKIcDfHKDdhfBVms-PCpwwKKKgWNvv0fYO-hT602_l7KKVdt75b-ijfWpvH-d7UZX_AXv19no
  priority: 102
  providerName: Directory of Open Access Journals
Title Redefining Retinal Lesion Segmentation: A Quantum Leap With DL-UNet Enhanced Auto Encoder-Decoder for Fundus Image Analysis
URI https://ieeexplore.ieee.org/document/10177951
https://www.proquest.com/docview/2839513000
https://doaj.org/article/a789036994cc45ffabfbdabc6d685ecf
Volume 11
WOSCitedRecordID wos001033518000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdg4gEe-ByiMCY_8Ei61HbimrfStQJpVDCY2Fvkj8s2iaZTl-xlEn87d45bDSGQeMmXbcXO786-u_juGHuDi2oQI1tnIqgyU0UuMxsKZDxbqwBelLK0MdmEXizGp6fmc3JWj74wABA3n8GQLuO__LDyHZnKDoh8tCGH6btal72z1tagQhkkTKFTZKFRbg4m0ykOYkgJwodSGKWU_G31iUH6U1aVP6biuL7MH_1nzx6zh0mQ5JMe-SfsDjRP2YNb4QWfsZtjCFDHDBD8mFybsf4RkHmMf4WzZfI6at7xCf_S4RfullhsL_n3i_acHx5lJwto-aw5j5sE-KRrV3hHPvDr7BDimaPIy-cdpf_gH5c4NfFNkJNddjKffZt-yFKyhcyjitdmSpZaOxGCDyW4XAGiBMigAafEHHwtxk45VD8KUSvwTmkUpGRwgVSsoLyWz9lOs2rgBePCUVA78HhE5S43VhgvR1YLXxTWjeWAiQ0IlU-RyCkhxo8qaiS5qXrkKkKuSsgN2Ntto8s-EMe_q78ndLdVKYp2fICwVYkpK0tewLI0Rnmvirq2rnbBOl-GclzgmAdsl6C-9b4e5QHb2xBLlVj-qkI5DYskEuLLvzR7xe5TF3sDzh7badcdvGb3_HV7cbXej9YAPH76OduPlP0Lpnf0Kg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQQAIextcmOgb4gUfSpbaT1LyVbtUmSgVjE3uz_HFhk2g7dQkv_PPcOW41hEDiJV-2FTu_O_vu4rtj7A0uqkEMbJ2JoMpMFbnMbCiQ8WytAnhRytLGZBPVbDa8uNCfkrN69IUBgLj5DPp0Gf_lh6VvyVR2QORTaXKYvlsoJfLOXWtjUqEcErqoUmyhQa4PRuMxDqNPKcL7UmillPxt_Ylh-lNelT8m47jCTB79Z98es-0kSvJRh_0TdgcWT9nDWwEGn7GfpxCgjjkg-Ck5N2P9KZCBjH-Bb_Pkd7R4x0f8c4vfuJ1jsb3mX6-aS344zc5n0PCjxWXcJsBHbbPEO_KCX2WHEM8chV4-aSkBCD-Z4-TE12FOdtj55OhsfJyldAuZRyWvyZQsq8qJEHwoweUKECdAFg04KebgazF0yqECUohagXeqQlFKBhdIyQrKV3KXbS2WC3jOuHAU1g48HlG9y7UV2suBrYQvCuuGssfEGgTjUyxySonx3USdJNemQ84QciYh12NvN42uu1Ac_67-ntDdVKU42vEBwmYSWxpLfsCy1Fp5r4q6tq52wTpfhnJY4Jh7bIegvvW-DuUe218Ti0lMf2NQUsMiiYS495dmr9n947OPUzM9mX14wR5Qdztzzj7balYtvGT3_I_m6mb1KlL2L_oj9Us
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redefining+Retinal+Lesion+Segmentation%3A+A+Quantum+Leap+With+DL-UNet+Enhanced+Auto+Encoder-Decoder+for+Fundus+Image+Analysis&rft.jtitle=IEEE+access&rft.au=Kumar%2C+B.+Naveen&rft.au=Mahesh%2C+T.+R.&rft.au=Geetha%2C+G.&rft.au=Guluwadi%2C+Suresh&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=70853&rft.epage=70864&rft_id=info:doi/10.1109%2FACCESS.2023.3294443&rft.externalDocID=10177951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon