Redefining Retinal Lesion Segmentation: A Quantum Leap With DL-UNet Enhanced Auto Encoder-Decoder for Fundus Image Analysis
The first diagnosis of diabetic retinopathy (DR) must include lesion segmentation. As it takes a lot of time and effort to label lesions, automatic segmentation methods have to be created manually. The degree of the retina's degenerative lesions determines how severe diabetic retinopathy is. A...
Uloženo v:
| Vydáno v: | IEEE access Ročník 11; s. 70853 - 70864 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The first diagnosis of diabetic retinopathy (DR) must include lesion segmentation. As it takes a lot of time and effort to label lesions, automatic segmentation methods have to be created manually. The degree of the retina's degenerative lesions determines how severe diabetic retinopathy is. A major influence is on the early detection of illness and treatment of DR. To reliably identify the sites of related lesions and identify various abnormalities in retinal fundus pictures, deep learning algorithms are crucial. Additionally, utilizing patch-based analysis, a deep convolutional neural network is constructed. In this study, encoder-decoder neural networks along with channel-wise spatial Attention Mechanisms are proposed. The IDRiD dataset, which includes hard exudate segmentations, is used to train and evaluate the architecture. In this method, image patches are created using the sliding window technique. To determine the effectiveness of the recommended strategy, a thorough experiment was conducted on IDRiD. In order to predict the various sorts of lesions, the trained network analyses the picture patches and creates a probability map. This technique's efficacy and supremacy are confirmed by the expected accuracy of 99.94 %. The findings of this experiment show significantly enhanced performance in terms of accuracy when compared to prior research on comparable tasks. |
|---|---|
| AbstractList | The first diagnosis of diabetic retinopathy (DR) must include lesion segmentation. As it takes a lot of time and effort to label lesions, automatic segmentation methods have to be created manually. The degree of the retina's degenerative lesions determines how severe diabetic retinopathy is. A major influence is on the early detection of illness and treatment of DR. To reliably identify the sites of related lesions and identify various abnormalities in retinal fundus pictures, deep learning algorithms are crucial. Additionally, utilizing patch-based analysis, a deep convolutional neural network is constructed. In this study, encoder-decoder neural networks along with channel-wise spatial Attention Mechanisms are proposed. The IDRiD dataset, which includes hard exudate segmentations, is used to train and evaluate the architecture. In this method, image patches are created using the sliding window technique. To determine the effectiveness of the recommended strategy, a thorough experiment was conducted on IDRiD. In order to predict the various sorts of lesions, the trained network analyses the picture patches and creates a probability map. This technique's efficacy and supremacy are confirmed by the expected accuracy of 99.94 %. The findings of this experiment show significantly enhanced performance in terms of accuracy when compared to prior research on comparable tasks. |
| Author | Geetha, G. Guluwadi, Suresh Kumar, B. Naveen Mahesh, T. R. |
| Author_xml | – sequence: 1 givenname: B. Naveen surname: Kumar fullname: Kumar, B. Naveen organization: Department of Computer Science and Engineering, Faculty of Engineering and Technology, JAIN (Deemed-to-be University), Bengaluru, India – sequence: 2 givenname: T. R. orcidid: 0000-0002-5589-8992 surname: Mahesh fullname: Mahesh, T. R. organization: Department of Computer Science and Engineering, Faculty of Engineering and Technology, JAIN (Deemed-to-be University), Bengaluru, India – sequence: 3 givenname: G. surname: Geetha fullname: Geetha, G. organization: Department of Computer Science and Engineering, Faculty of Engineering and Technology, JAIN (Deemed-to-be University), Bengaluru, India – sequence: 4 givenname: Suresh orcidid: 0000-0001-7905-3014 surname: Guluwadi fullname: Guluwadi, Suresh email: suresh.guluwadi@astu.edu.et organization: Department of Mechanical Engineering, Adama Science and Technology University, Adama, Ethiopia |
| BookMark | eNp9UU1vGyEQXVWp1DTNL2gPSD2vC8vHLr1ZjtNaslI1btQjYmHWwbLBBfYQ5c8XZxMp6qFchhnmvRnee1-d-eChqj4SPCMEyy_zxWK52cwa3NAZbSRjjL6pzhsiZE05FWev7u-qy5R2uJyulHh7Xj3egoXBeee36Bay83qP1pBc8GgD2wP4rHNJvqI5-jlqn8dDedZH9Nvle3S1ru9uIKOlv9fegEXzMYeSmWAh1lfwFNEQIroevR0TWh30FtC8DHlILn2o3g56n-DyOV5Ud9fLX4vv9frHt9Vivq4NwzLXjIq27RtrjRXQYwaCCuCUWMIpBjM0Xc96ziVvBgamZ60oCtjeYsKkZaalF9Vq4rVB79QxuoOODypop54KIW6VjtmZPSjddhJTISUzhvFh0P3QW90bYUXHy6zC9XniOsbwZ4SU1S6MsXwoqaajkhNaxC1dcuoyMaQUYVDGTULmqN1eEaxO1qnJOnWyTj1bV7D0H-zLxv9HfZpQDgBeIUjbnpb6C3TTpzM |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2025_108598 crossref_primary_10_1016_j_bspc_2024_106132 crossref_primary_10_3390_diagnostics13193053 crossref_primary_10_1007_s12065_024_00971_2 crossref_primary_10_1016_j_pdpdt_2024_104259 crossref_primary_10_3390_ani14010131 crossref_primary_10_1109_ACCESS_2025_3539372 crossref_primary_10_1007_s13748_025_00379_8 crossref_primary_10_1109_TIM_2024_3381663 crossref_primary_10_1007_s42979_024_03451_7 crossref_primary_10_1016_j_bspc_2023_105630 crossref_primary_10_1109_ACCESS_2024_3401669 crossref_primary_10_1007_s11082_023_06203_8 crossref_primary_10_1109_ACCESS_2023_3322587 crossref_primary_10_1038_s41598_024_67130_6 crossref_primary_10_1007_s00521_024_09989_0 crossref_primary_10_3389_fmed_2024_1470941 |
| Cites_doi | 10.1109/ICACCS51430.2021.9441964 10.15676/ijeei.2021.13.3.2 10.1109/ACCESS.2020.3023273 10.1109/CCECE.2019.8861897 10.1186/s12886-018-0954-4 10.1109/CHASE.2016.12 10.1007/978-3-030-43192-1_75 10.3390/math11020257 10.3844/jcssp.2018.438.452 10.1117/12.2540175 10.1109/TMI.2015.2458702 10.1117/1.JMI.6.2.025008 10.1109/CSPA.2019.8695980 10.3991/ijoe.v18i13.33985 10.1016/j.ins.2019.06.011 10.1145/3474963.3475849 10.1504/IJSISE.2018.10015063 10.1109/ACCESS.2021.3131216 10.1109/ACCESS.2019.2920616 10.3390/data3030025 10.1016/S0734-189X(87)80186-X 10.1007/978-3-030-03493-1_18 10.1016/j.bbe.2020.05.006 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2023.3294443 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 70864 |
| ExternalDocumentID | oai_doaj_org_article_a789036994cc45ffabfbdabc6d685ecf 10_1109_ACCESS_2023_3294443 10177951 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-43677b2ddcd6eb04e636e531d1530ecf28b4b55952f4ecb476443dbd0149d4c73 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001033518000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:15 EDT 2025 Mon Jun 30 05:22:19 EDT 2025 Sat Nov 29 04:02:49 EST 2025 Tue Nov 18 21:42:25 EST 2025 Wed Aug 27 02:25:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-43677b2ddcd6eb04e636e531d1530ecf28b4b55952f4ecb476443dbd0149d4c73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7905-3014 0000-0002-5589-8992 |
| OpenAccessLink | https://doaj.org/article/a789036994cc45ffabfbdabc6d685ecf |
| PQID | 2839513000 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2023_3294443 crossref_primary_10_1109_ACCESS_2023_3294443 doaj_primary_oai_doaj_org_article_a789036994cc45ffabfbdabc6d685ecf ieee_primary_10177951 proquest_journals_2839513000 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref10 ref2 ref1 ref17 ref19 ref18 zahangir alom (ref16) 2018 vora (ref3) 2022 mohamed (ref11) 2017 ref24 ref23 ref26 ref20 ref22 ref21 ref28 ref27 ref8 ronneberger (ref7) 2015; 18 ref9 ref4 ref6 ref5 gharaibeh (ref25) 2016; 10 |
| References_xml | – ident: ref15 doi: 10.1109/ICACCS51430.2021.9441964 – ident: ref23 doi: 10.15676/ijeei.2021.13.3.2 – volume: 18 start-page: 234 year: 2015 ident: ref7 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent – ident: ref12 doi: 10.1109/ACCESS.2020.3023273 – ident: ref5 doi: 10.1109/CCECE.2019.8861897 – ident: ref19 doi: 10.1186/s12886-018-0954-4 – ident: ref18 doi: 10.1109/CHASE.2016.12 – ident: ref20 doi: 10.1007/978-3-030-43192-1_75 – ident: ref17 doi: 10.3390/math11020257 – ident: ref2 doi: 10.3844/jcssp.2018.438.452 – year: 2017 ident: ref11 publication-title: Detection and tracking of pallets using a laser rangefinder and machine learning techniques – ident: ref26 doi: 10.1117/12.2540175 – ident: ref14 doi: 10.1109/TMI.2015.2458702 – ident: ref4 doi: 10.1117/1.JMI.6.2.025008 – ident: ref6 doi: 10.1109/CSPA.2019.8695980 – volume: 10 start-page: 1 year: 2016 ident: ref25 article-title: An effective diagnosis of diabetic retinopathy with aid of soft computing approaches publication-title: Energy and Power Engineering – ident: ref24 doi: 10.3991/ijoe.v18i13.33985 – ident: ref28 doi: 10.1016/j.ins.2019.06.011 – ident: ref13 doi: 10.1145/3474963.3475849 – ident: ref22 doi: 10.1504/IJSISE.2018.10015063 – ident: ref27 doi: 10.1109/ACCESS.2021.3131216 – year: 2018 ident: ref16 article-title: Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation publication-title: arXiv 1802 06955 – ident: ref1 doi: 10.1109/ACCESS.2019.2920616 – ident: ref9 doi: 10.3390/data3030025 – ident: ref8 doi: 10.1016/S0734-189X(87)80186-X – year: 2022 ident: ref3 article-title: A deep learning based approach to segment exudates in retinal fundus images using recurrent residual U-Net publication-title: TechRxiv – ident: ref10 doi: 10.1007/978-3-030-03493-1_18 – ident: ref21 doi: 10.1016/j.bbe.2020.05.006 |
| SSID | ssj0000816957 |
| Score | 2.3595967 |
| Snippet | The first diagnosis of diabetic retinopathy (DR) must include lesion segmentation. As it takes a lot of time and effort to label lesions, automatic... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 70853 |
| SubjectTerms | Abnormalities Algorithms Artificial neural networks Coders convolutional neural network Convolutional neural networks Decoding Deep learning Diabetes Diabetic retinopathy Diseases encoder-decoder network Encoders-Decoders Encoding Exudation fundus images Image analysis Image enhancement Image segmentation lesion segmentation Lesions Machine learning Network analysis Neural networks patch generation Retina spatial attention mechanism |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELag4gAHnkUsFOQDR7INideOuS3brkCqVlCo6M3yY9xWYrPVNumlf54Zx7sqQiBxysN2Yucb2-OJZz7G3kZRhjIKW0SnXYH6vyxcBbKwtrRQa08RWBLZhFosmtNT_SU7qydfGABIm89gTKfpX35Y-Z5MZfskPkqTw_RdpeTgrLU1qBCDhJ6oHFnofan3p7MZNmJMBOHjutJCiPq32ScF6c-sKn8MxWl-mT_6z5o9Zg-zIsmnA_JP2B1on7IHt8ILPmM3xxAgJgYIfkyuzZj_CMg8xr_B2TJ7HbUf-JR_7fEL90tMtpf8x0V3zg-OipMFdPywPU-bBPi071Z4RT7w6-IA0pGjysvnPdF_8M9LHJr4JsjJLjuZH36ffSoy2ULhcYnXFaKWSrkqBB8kuFKArCVgBw04JJbgY9U44XD5MamiAO-EQkWqDi7QEisIr-rnbKddtfCCcYujho6Nd_hEUanKNpV1ieQnuti4csSqDQjG50jkRIjx06QVSanNgJwh5ExGbsTebQtdDoE4_p39I6G7zUpRtNMNhM3kTmkseQHXUmvhvZjEaF10wTovg2wm2OYR2yWob71vQHnE9jbCYnKXvzKop2FSjYL48i_FXrH7VMXBgLPHdrp1D6_ZPX_dXVyt3yRp_gXzdfLG priority: 102 providerName: IEEE |
| Title | Redefining Retinal Lesion Segmentation: A Quantum Leap With DL-UNet Enhanced Auto Encoder-Decoder for Fundus Image Analysis |
| URI | https://ieeexplore.ieee.org/document/10177951 https://www.proquest.com/docview/2839513000 https://doaj.org/article/a789036994cc45ffabfbdabc6d685ecf |
| Volume | 11 |
| WOSCitedRecordID | wos001033518000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiEcRC6XygSNuvbbXjrkt212BVFZQqOjN8rOtxKbVNuGCxG9n7HirRUhw4ZIosRPHnsl4xvJ8H0KvkqCBJmFJctoR8P8lcSxKYi21kWufEVgK2YRaLpuzM_1xi-or7wkb4IGHgTu0OVOTS62F92KSknXJBeu8DLKZRJ-y9aVKbwVTxQY3Y6knqsIMjak-nM5m0KODzBZ-wJkWQvDfpqKC2F8pVv6wy2WyWTxED6qXiKfD1z1Cd2L7GN3fwg58gn6cxBBToXfAJzlvGeofx7z2hT_H81VNKWrf4Cn-1MPw9Ssottf462V3gY-OyekydnjeXpQdAHjad1dwlRPc1-QoljMGfxYv-sztgd-vwO7gDYLJLjpdzL_M3pHKpEA8xG8dEVwq5VgIPsjoqIiSywh_XwB7R2EQWeOEg9hiwpKI3gkFXhIPLuT4KQiv-FO001618RnCFkyCTo138EbBFLMNs64w-CSXGkdHiG0G1fgKM57ZLr6ZEm5QbQZJmCwJUyUxQq9vH7oeUDb-Xv1tltZt1QyRXW6A4piqOOZfijNCu1nWW-2NlQJ_c4T2NsI39X--MeCEQREHxXr-P9p-ge7l_gxLOXtop1v38SW66793lzfr_aLKcPzwc75fEhJ_AeZh-W4 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQQYIeeBaxUMAHjmQbHG8Sc1u2XbViWUFpRW-WH2NaqZuttgkX_jwzjndVhEDilIftxM43tscTz3yMvQky93mQJgtW2Qz1_zKzAsrMmNxAoRxFYIlkE9V8Xp-dqc_JWT36wgBA3HwGQzqN__L90nVkKtsj8akUOUzfHkkp8t5da2NSIQ4JNapSbKF3udobTybYjCFRhA8LoaSUxW_zTwzTn3hV_hiM4wwzffCfdXvI7idVko977B-xW9A8Zts3Agw-YT-PwUOIHBD8mJybMf8MyEDGv8L3RfI7at7zMf_S4TfuFphsrvi3i_ac78-y0zm0_KA5j9sE-Lhrl3hFXvCrbB_ikaPSy6cdEYDwowUOTnwd5mSHnU4PTiaHWaJbyBwu8tpMFmVVWeG98yXYXEJZlIBd1OOgmIMLorbS4gJkJIIEZ2WFqlThradFlpeuKp6yrWbZwDPGDY4bKtTO4hOlqISphbGR5ifYUNt8wMQaBO1SLHKixLjUcU2SK90jpwk5nZAbsLebQld9KI5_Z_9A6G6yUhzteANh06lbakN-wEWplHROjkIwNlhvrCt9WY-wzQO2Q1DfeF-P8oDtroVFp05_rVFTw6QCBfH5X4q9ZncPTz7N9Oxo_vEFu0fV7c05u2yrXXXwkt1xP9qL69WrKNm_ALXM9g0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redefining+Retinal+Lesion+Segmentation%3A+A+Quantum+Leap+With+DL-UNet+Enhanced+Auto+Encoder-Decoder+for+Fundus+Image+Analysis&rft.jtitle=IEEE+access&rft.au=Kumar%2C+B.+Naveen&rft.au=Mahesh%2C+T.+R.&rft.au=Geetha%2C+G.&rft.au=Guluwadi%2C+Suresh&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=70853&rft.epage=70864&rft_id=info:doi/10.1109%2FACCESS.2023.3294443&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3294443 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |