Land Use and Land Cover Classification using River Formation Dynamics Algorithm with Deep Learning on Remote Sensing Images

Currently, remote sensing images (RSIs) are often exploited in the explanation of urban and rural areas, change recognition, and other domains. As the majority of RSI is high-resolution and contains wide and varied data, proper interpretation of RSIs is most important. Land use and land cover (LULC)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 12; S. 1
Hauptverfasser: Aljebreen, Mohammed, Mengash, Hanan Abdullah, Alamgeer, Mohammad, Alotaibi, Saud S., Salama, Ahmed S., Hamza, Manar Ahmed
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Currently, remote sensing images (RSIs) are often exploited in the explanation of urban and rural areas, change recognition, and other domains. As the majority of RSI is high-resolution and contains wide and varied data, proper interpretation of RSIs is most important. Land use and land cover (LULC) classification utilizing deep learning (DL) is a common and efficient manner in remote sensing and geospatial study. It is very important in land planning, environmental monitoring, mapping, and land management. But, one of the recent approaches is problems like vulnerability to noise interference, low classification accuracy, and worse generalization ability. DL approaches, mostly Convolutional Neural Networks (CNNs) revealed impressive performance in image recognition tasks, making them appropriate for LULC classification in RSIs. Therefore, this study introduces a novel Land Use and Land Cover Classification employing the River Formation Dynamics Algorithm with Deep Learning (LULCC-RFDADL) technique on RSIs. The main objective of the LULCC-RFDADL methodology is to recognize the diverse types of LC on RSIs. In the presented LULCC-RFDADL technique, the dense EfficientNet approach is applied for feature extraction. Furthermore, the hyperparameter tuning of the Dense EfficientNet method was implemented using the RFDA technique. For the classification process, the LULCC-RFDADL technique uses the Multi-Scale Convolutional Autoencoder (MSCAE) model. At last, the seeker optimization algorithm (SOA) has been exploited for the parameter choice of the MSCAE system. The achieved outcomes of the LULCC-RFDADL algorithm were examined on benchmark databases. The simulation values show the better result of the LULCC-RFDADL methods with other approaches in terms of different metrics.
AbstractList Currently, remote sensing images (RSIs) are often exploited in the explanation of urban and rural areas, change recognition, and other domains. As the majority of RSI is high-resolution and contains wide and varied data, proper interpretation of RSIs is most important. Land use and land cover (LULC) classification utilizing deep learning (DL) is a common and efficient manner in remote sensing and geospatial study. It is very important in land planning, environmental monitoring, mapping, and land management. But, one of the recent approaches is problems like vulnerability to noise interference, low classification accuracy, and worse generalization ability. DL approaches, mostly Convolutional Neural Networks (CNNs) revealed impressive performance in image recognition tasks, making them appropriate for LULC classification in RSIs. Therefore, this study introduces a novel Land Use and Land Cover Classification employing the River Formation Dynamics Algorithm with Deep Learning (LULCC-RFDADL) technique on RSIs. The main objective of the LULCC-RFDADL methodology is to recognize the diverse types of LC on RSIs. In the presented LULCC-RFDADL technique, the dense EfficientNet approach is applied for feature extraction. Furthermore, the hyperparameter tuning of the Dense EfficientNet method was implemented using the RFDA technique. For the classification process, the LULCC-RFDADL technique uses the Multi-Scale Convolutional Autoencoder (MSCAE) model. At last, the seeker optimization algorithm (SOA) has been exploited for the parameter choice of the MSCAE system. The achieved outcomes of the LULCC-RFDADL algorithm were examined on benchmark databases. The simulation values show the better result of the LULCC-RFDADL methods with other approaches in terms of different metrics.
Author Hamza, Manar Ahmed
Alamgeer, Mohammad
Aljebreen, Mohammed
Mengash, Hanan Abdullah
Alotaibi, Saud S.
Salama, Ahmed S.
Author_xml – sequence: 1
  givenname: Mohammed
  surname: Aljebreen
  fullname: Aljebreen, Mohammed
  organization: Department of Computer Science, Community College, King Saud University, P.O. Box 28095, Riyadh, Saudi Arabia
– sequence: 2
  givenname: Hanan Abdullah
  orcidid: 0000-0002-4103-2434
  surname: Mengash
  fullname: Mengash, Hanan Abdullah
  organization: Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia
– sequence: 3
  givenname: Mohammad
  orcidid: 0000-0003-2575-4493
  surname: Alamgeer
  fullname: Alamgeer, Mohammad
  organization: Department of Information Systems, College of Science & Art at Mahayil, King Khalid University, Saudi Arabia
– sequence: 4
  givenname: Saud S.
  orcidid: 0000-0003-1082-513X
  surname: Alotaibi
  fullname: Alotaibi, Saud S.
  organization: Department of Information Systems, College of Computing and Information Systems, Umm Al-Qura University, Saudi Arabia
– sequence: 5
  givenname: Ahmed S.
  orcidid: 0000-0002-1066-8261
  surname: Salama
  fullname: Salama, Ahmed S.
  organization: Department of Electrical Engineering, Faculty of Engineering & Technology, Future University in Egypt, New Cairo, Egypt
– sequence: 6
  givenname: Manar Ahmed
  orcidid: 0000-0002-8743-1174
  surname: Hamza
  fullname: Hamza, Manar Ahmed
  organization: Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, AlKharj, Saudi Arabia
BookMark eNqFUU1v3CAQtapEaprkF7QHpJ53y4eN4bhyPrrSSpWyzRkBHm9Z2bAFb6uofz54HUVRLuXADI95b2Dep-LMBw9F8ZngJSFYfls1ze12u6SYsiVjpaSi-lBcUMLlglWMn73JPxbXKe1xXiJDVX1R_Nto36LHBGiKp0MT_kBETa9Tcp2zenTBo2Nyfoce3HR1F-IwozdPXg_OJrTqdyG68deA_uYd3QAc0AZ09BMrFz7AEEZAW_AnnfWgd5CuivNO9wmuX-Jl8Xh3-7P5vtj8uF83q83ClliOC2YwaStMTC2tqGUnuNW8LEvIaFcDMbyE1nRgBBOSYGYkJwSkMPmPxgrNLov1rNsGvVeH6AYdn1TQTp2AEHdKx9HZHpS2pqKVJbxtbUnBGiPr0rIWk67lNbZZ6-usdYjh9xHSqPbhGH1-vqKSCEwl5SRXsbnKxpBShO61K8FqMk3NpqnJNPViWmbJdyzrxtOgx6hd_x_ul5nrAOBNN1bnaVD2DHiHp9w
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3522197
crossref_primary_10_1109_JSTARS_2025_3586324
crossref_primary_10_1016_j_ecoinf_2025_103078
crossref_primary_10_1016_j_jag_2025_104839
crossref_primary_10_3390_su17198526
crossref_primary_10_1016_j_ecolind_2025_113776
crossref_primary_10_1007_s12665_024_11957_9
crossref_primary_10_1109_JSTARS_2024_3426950
crossref_primary_10_1061_JUPDDM_UPENG_5838
Cites_doi 10.1109/ACCESS.2020.3041873
10.1007/s12524-019-01064-9
10.1109/ACCESS.2021.3128607
10.1109/TCSVT.2022.3214430
10.1080/23729333.2023.2166252
10.1109/IHCSP56702.2023.10127126
10.3390/ijgi9040227
10.3390/rs12152495
10.3390/rs12071135
10.1145/3581783.3611744
10.1109/ACCESS.2023.3293108
10.1016/j.scitotenv.2022.153559
10.1109/TGRS.2023.3284671
10.3390/axioms11010034
10.3390/rs12122010
10.3390/mi14071417
10.3390/rs12020213
10.1109/ICRITO48877.2020.9197824
10.1016/j.rse.2019.111322
10.1109/ACCESS.2021.3052791
10.3390/app12115747
10.1038/s41598-023-30480-8
10.1109/LGRS.2023.3251652
10.3390/s21238083
10.1007/s12517-022-10246-8
10.1155/2023/8110588
10.1007/s00521-019-04349-9
10.1016/j.ecoinf.2021.101412
10.3390/jimaging9080153
10.3390/rs14194837
10.1080/17538947.2021.1980125
10.1016/j.ejrs.2023.04.005
10.1002/cpe.6143
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3349285
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_acb525c16ddc42ecbb974c3d01fd670c
10_1109_ACCESS_2023_3349285
10379612
Genre orig-research
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-3b01d501b79c879f86ca6444e1d5f7e1b64edbfeb8389103b9611e98b816bc8a3
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001150326900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:14 EDT 2025
Mon Jun 30 06:25:02 EDT 2025
Sat Nov 29 06:25:21 EST 2025
Tue Nov 18 20:56:27 EST 2025
Wed Aug 27 02:24:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-3b01d501b79c879f86ca6444e1d5f7e1b64edbfeb8389103b9611e98b816bc8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4103-2434
0000-0002-8743-1174
0000-0002-1066-8261
0000-0003-1082-513X
0000-0003-2575-4493
OpenAccessLink https://ieeexplore.ieee.org/document/10379612
PQID 2918029261
PQPubID 4845423
PageCount 1
ParticipantIDs crossref_primary_10_1109_ACCESS_2023_3349285
crossref_citationtrail_10_1109_ACCESS_2023_3349285
proquest_journals_2918029261
doaj_primary_oai_doaj_org_article_acb525c16ddc42ecbb974c3d01fd670c
ieee_primary_10379612
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref17
Aidantausta (ref1) 2023
ref16
ref19
ref18
ref23
ref26
ref25
ref20
ref22
ref21
Jeyavathana (ref24) 2022; 2452
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref27
  doi: 10.1109/ACCESS.2020.3041873
– ident: ref20
  doi: 10.1007/s12524-019-01064-9
– ident: ref28
  doi: 10.1109/ACCESS.2021.3128607
– ident: ref16
  doi: 10.1109/TCSVT.2022.3214430
– ident: ref5
  doi: 10.1080/23729333.2023.2166252
– ident: ref6
  doi: 10.1109/IHCSP56702.2023.10127126
– ident: ref8
  doi: 10.3390/ijgi9040227
– ident: ref4
  doi: 10.3390/rs12152495
– ident: ref14
  doi: 10.3390/rs12071135
– ident: ref17
  doi: 10.1145/3581783.3611744
– ident: ref11
  doi: 10.1109/ACCESS.2023.3293108
– ident: ref15
  doi: 10.1016/j.scitotenv.2022.153559
– ident: ref3
  doi: 10.1109/TGRS.2023.3284671
– ident: ref30
  doi: 10.3390/axioms11010034
– ident: ref21
  doi: 10.3390/rs12122010
– ident: ref33
  doi: 10.3390/mi14071417
– ident: ref35
  doi: 10.3390/rs12020213
– ident: ref7
  doi: 10.1109/ICRITO48877.2020.9197824
– ident: ref22
  doi: 10.1016/j.rse.2019.111322
– volume: 2452
  issue: 1
  year: 2022
  ident: ref24
  article-title: Land use and land cover classification using Landsat-8 multispectral remote sensing images and long short-term memory-recurrent neural network
  publication-title: AIP Conf.
– ident: ref29
  doi: 10.1109/ACCESS.2021.3052791
– ident: ref32
  doi: 10.3390/app12115747
– ident: ref10
  doi: 10.1038/s41598-023-30480-8
– ident: ref19
  doi: 10.1109/LGRS.2023.3251652
– ident: ref13
  doi: 10.3390/s21238083
– ident: ref2
  doi: 10.1007/s12517-022-10246-8
– ident: ref31
  doi: 10.1155/2023/8110588
– ident: ref26
  doi: 10.1007/s00521-019-04349-9
– ident: ref25
  doi: 10.1016/j.ecoinf.2021.101412
– ident: ref18
  doi: 10.3390/jimaging9080153
– ident: ref36
  doi: 10.3390/rs14194837
– ident: ref23
  doi: 10.1080/17538947.2021.1980125
– ident: ref12
  doi: 10.1016/j.ejrs.2023.04.005
– ident: ref9
  doi: 10.1002/cpe.6143
– year: 2023
  ident: ref1
  article-title: Land use/land cover classification from satellite remote sensing images over urban areas in Sweden: An investigative multiclass, multimodal and spectral transformation, deep learning semantic image segmentation study
SSID ssj0000816957
Score 2.3670123
Snippet Currently, remote sensing images (RSIs) are often exploited in the explanation of urban and rural areas, change recognition, and other domains. As the majority...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Classification
Classification algorithms
Deep learning
Environmental monitoring
Feature extraction
Heuristic algorithms
Land cover
Land management
Land use
Land use classification
Land use planning
Machine learning
Metaheuristics
Remote sensing
Remote sensing images
Satellite images
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiEcRWwrygSNp_UpsH5ctK5BQhQoVvVke2ymV2m21Wbj0z9fjeKtISHDhkiiWI8cz4_FMMvk-Qt6JYHWUGhrtucIERTVWWdZ4L4OBoGJIppBN6ONjc3Zmv06ovrAmbIQHHgV36AO0og28izEokQJAjoCDjIz3sdMsoPdl2k6SqeKDDe9sqyvMEGf2cL5Y5BkdIFv4gURIPmRPnmxFBbG_Uqz84ZfLZrN8Sp7UKJHOx6d7Rh6k1XPyeIId-ILcfvGrSE-HRPFcLhZYjkkLzSUWABWZ01ITQE-w_IIut38q0qORiH6g88vz6_XF5ucV_ZGP9CilG1oxV89p7niSsi4T_YZ17rnl81X2P8MuOV1-_L741FQmhSbk_G3TSGA8toyDtsFo25su-BwIqZRbe504dCpF6BMY_GzJJNiO82QNZDFCMF6-JDur61V6RWjXRsQQtGBSr6IQFnj00IMMHpS3aUbEVqguVJhxZLu4dCXdYNaNmnCoCVc1MSPv72-6GVE2_t79A2rrvitCZJeGbDiuGo77l-HMyC7qejKe1HnaYkb2t8p3dT0PTlhEyrM53dz7H2O_Jo8ELovyKmef7GzWv9Ib8jD83lwM67fFlO8Ahl33mQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Land Use and Land Cover Classification using River Formation Dynamics Algorithm with Deep Learning on Remote Sensing Images
URI https://ieeexplore.ieee.org/document/10379612
https://www.proquest.com/docview/2918029261
https://doaj.org/article/acb525c16ddc42ecbb974c3d01fd670c
Volume 12
WOSCitedRecordID wos001150326900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWg4gAHPotYKJUPHMk2TpzYPi7brkCCChUq9WZ57Mm2UrtbbbZckPjteBzvaiUEEpd8WI4S59lOZjzzHmPvKm9UqBUUyglJBoosjDRl4VztNXgZPOokNqFOT_XFhfmak9VTLgwipuAzHNNhWssPS39HrrIjymkzLWkK31eqHZK1tg4VUpAwjcrMQqI0R5PpNDZiTALh45pY-Egweefrk0j6s6rKH1Nx-r7Mnvznkz1lj_OPJJ8MyD9j93DxnD3aoRd8wX5-dovAz3vktE8nU4rY5EkJk2KEEiycYt_n_IwiNPhsk8zIjwet-p5PrufL1dX68oaT05YfI97yTMs657HiGUa4kX-jUPhY8ukmTlH9PjufnXyffiyy2ELho4m3LmooRWhKAcp4rUynW-_iv5LEWNopFNBKDNAhaFrZLGuIzRVoNMTXDl67-iXbWywX-IrxtglEM2hAYydDVRkQwUEHtXcgncERqzYgWJ-ZyEkQ49omi6Q0dkDOEnI2Izdi77cX3Q5EHP-u_oHQ3VYlFu1UEGGzeVBa56GpGi_aELys0ANE68rXoRRdaFXpR2yfoN6534DyiB1sOovNQ763lSEyPRMt0td_uewNe1jRYEgOnAO2t17d4Vv2wP9YX_Wrw-QNiNsvv04OU8_-DcnJ9iU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQQAIeuA5RGOAHHkkXO05sP5aOahOlQmOT9mb5ctJN2tqp6Xjhz-PjuFUlBBJPSSxbifP5duxzvo-Qj9xrGSrpCmmZQANFFFrosrC28sp5ETyoJDYhZzN1caG_52D1FAsDAMn5DIZ4m87yw9Lf4VbZIca06QY1he_XQvCyD9fabqmghoSuZeYWYqU-HI3HsRpDlAgfVsjDh5LJO_NPounPuip_DMZphpk8_c9ve0ae5KUkHfXYPyf3YPGCPN4hGHxJfk3tItDzDihe08MYfTZp0sJEL6EEDEXv9zk9RR8NOtmEM9KjXq2-o6Pr-XJ1tb68obhtS48AbmkmZp3TmPEUIuBAf6AzfEw5uYmDVLdPzidfzsbHRZZbKHw08tZF5UoW6pI5qb2SulWNt3G1JCCmthKYawQE14JTeLZZVi5Wl4FWLv5255WtXpG9xXIBrwlt6oBEg9opaEXgXDsWrGtd5a0TVsOA8A0IxmcucpTEuDbJJim16ZEziJzJyA3Ip22h256K49_ZPyO626zIo50SImwmd0tjvat57VkTghccvHPRvvJVKFkbGln6AdlHqHfe16M8IAebxmJyp-8M10inp6NN-uYvxT6Qh8dn36ZmejL7-pY84tg10nbOAdlbr-7gHXngf66vutX71LJ_Ax2Q90Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land+Use+and+Land+Cover+Classification+using+River+Formation+Dynamics+Algorithm+with+Deep+Learning+on+Remote+Sensing+Images&rft.jtitle=IEEE+access&rft.au=Aljebreen%2C+Mohammed&rft.au=Mengash%2C+Hanan+Abdullah&rft.au=Alamgeer%2C+Mohammad&rft.au=Alotaibi%2C+Saud+S.&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2023.3349285&rft.externalDocID=10379612
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon