Crack Localization in Hydraulic Turbine Blades Based on Kernel Independent Component Analysis and Wavelet Neural Network

Hydraulic turbine runner has a complex structure, and traditional location methods can’t meet its requirement. This paper describes a source location of cracks in turbine blades by combining kernel independent component analysis (KICA) with wavelet neural network (WNN). The research shows that the l...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computational intelligence systems Ročník 6; číslo 6; s. 1116 - 1124
Hlavní autoři: Wang, Xianghong, Mao, Hanling, Hu, Hongwei, Zhang, Zhiyong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.12.2013
Springer
Témata:
ISSN:1875-6891, 1875-6883, 1875-6883
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Hydraulic turbine runner has a complex structure, and traditional location methods can’t meet its requirement. This paper describes a source location of cracks in turbine blades by combining kernel independent component analysis (KICA) with wavelet neural network (WNN). The research shows that the location accuracy of WNN combined with KICA feature extraction is the best comparing with the results of WNN and back propagation neural network (BPNN). The method decreases the dimension of input parameters and improves the accuracy of location as well.
ISSN:1875-6891
1875-6883
1875-6883
DOI:10.1080/18756891.2013.817065