Crack Localization in Hydraulic Turbine Blades Based on Kernel Independent Component Analysis and Wavelet Neural Network
Hydraulic turbine runner has a complex structure, and traditional location methods can’t meet its requirement. This paper describes a source location of cracks in turbine blades by combining kernel independent component analysis (KICA) with wavelet neural network (WNN). The research shows that the l...
Saved in:
| Published in: | International journal of computational intelligence systems Vol. 6; no. 6; pp. 1116 - 1124 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
01.12.2013
Springer |
| Subjects: | |
| ISSN: | 1875-6891, 1875-6883, 1875-6883 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Hydraulic turbine runner has a complex structure, and traditional location methods can’t meet its requirement. This paper describes a source location of cracks in turbine blades by combining kernel independent component analysis (KICA) with wavelet neural network (WNN). The research shows that the location accuracy of WNN combined with KICA feature extraction is the best comparing with the results of WNN and back propagation neural network (BPNN). The method decreases the dimension of input parameters and improves the accuracy of location as well. |
|---|---|
| ISSN: | 1875-6891 1875-6883 1875-6883 |
| DOI: | 10.1080/18756891.2013.817065 |