Crack Localization in Hydraulic Turbine Blades Based on Kernel Independent Component Analysis and Wavelet Neural Network
Hydraulic turbine runner has a complex structure, and traditional location methods can’t meet its requirement. This paper describes a source location of cracks in turbine blades by combining kernel independent component analysis (KICA) with wavelet neural network (WNN). The research shows that the l...
Gespeichert in:
| Veröffentlicht in: | International journal of computational intelligence systems Jg. 6; H. 6; S. 1116 - 1124 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.12.2013
Springer |
| Schlagworte: | |
| ISSN: | 1875-6891, 1875-6883, 1875-6883 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Hydraulic turbine runner has a complex structure, and traditional location methods can’t meet its requirement. This paper describes a source location of cracks in turbine blades by combining kernel independent component analysis (KICA) with wavelet neural network (WNN). The research shows that the location accuracy of WNN combined with KICA feature extraction is the best comparing with the results of WNN and back propagation neural network (BPNN). The method decreases the dimension of input parameters and improves the accuracy of location as well. |
|---|---|
| ISSN: | 1875-6891 1875-6883 1875-6883 |
| DOI: | 10.1080/18756891.2013.817065 |