Open‐source large language models in action: A bioinformatics chatbot for PRIDE database

ABSTRACT We here present a chatbot assistant infrastructure (https://www.ebi.ac.uk/pride/chatbot/) that simplifies user interactions with the PRIDE database's documentation and dataset search functionality. The framework utilizes multiple Large Language Models (LLM): llama2, chatglm, mixtral (m...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proteomics (Weinheim) Ročník 24; číslo 21-22; s. e2400005 - n/a
Hlavní autori: Bai, Jingwen, Kamatchinathan, Selvakumar, Kundu, Deepti J., Bandla, Chakradhar, Vizcaíno, Juan Antonio, Perez‐Riverol, Yasset
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Wiley Subscription Services, Inc 2024-11-00
2024-Nov
20241101
Predmet:
ISSN:1615-9853, 1615-9861, 1615-9861
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:ABSTRACT We here present a chatbot assistant infrastructure (https://www.ebi.ac.uk/pride/chatbot/) that simplifies user interactions with the PRIDE database's documentation and dataset search functionality. The framework utilizes multiple Large Language Models (LLM): llama2, chatglm, mixtral (mistral), and openhermes. It also includes a web service API (Application Programming Interface), web interface, and components for indexing and managing vector databases. An Elo‐ranking system‐based benchmark component is included in the framework as well, which allows for evaluating the performance of each LLM and for improving PRIDE documentation. The chatbot not only allows users to interact with PRIDE documentation but can also be used to search and find PRIDE datasets using an LLM‐based recommendation system, enabling dataset discoverability. Importantly, while our infrastructure is exemplified through its application in the PRIDE database context, the modular and adaptable nature of our approach positions it as a valuable tool for improving user experiences across a spectrum of bioinformatics and proteomics tools and resources, among other domains. The integration of advanced LLMs, innovative vector‐based construction, the benchmarking framework, and optimized documentation collectively form a robust and transferable chatbot assistant infrastructure. The framework is open‐source (https://github.com/PRIDE‐Archive/pride‐chatbot).
Bibliografia:Jingwen Bai and Selvakumar Kamatchinathan contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1615-9853
1615-9861
1615-9861
DOI:10.1002/pmic.202400005