MultiClusterTree: Interactive Visual Exploration of Hierarchical Clusters in Multidimensional Multivariate Data

Visual analytics of multidimensional multivariate data is a challenging task because of the difficulty in understanding metrics in attribute spaces with more than three dimensions. Frequently, the analysis goal is not to look into individual records but to understand the distribution of the records...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 28; no. 3; pp. 823 - 830
Main Authors: Van Long, Tran, Linsen, Lars
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01.06.2009
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Visual analytics of multidimensional multivariate data is a challenging task because of the difficulty in understanding metrics in attribute spaces with more than three dimensions. Frequently, the analysis goal is not to look into individual records but to understand the distribution of the records at large and to find clusters of records with similar attribute values. A large number of (typically hierarchical) clustering algorithms have been developed to group individual records to clusters of statistical significance. However, only few visualization techniques exist for further exploring and understanding the clustering results. We propose visualization and interaction methods for analyzing individual clusters as well as cluster distribution within and across levels in the cluster hierarchy. We also provide a clustering method that operates on density rather than individual records. To not restrict our search for clusters, we compute density in the given multidimensional multivariate space. Clusters are formed by areas of high density. We present an approach that automatically computes a hierarchical tree of high density clusters. To visually represent the cluster hierarchy, we present a 2D radial layout that supports an intuitive understanding of the distribution structure of the multidimensional multivariate data set. Individual clusters can be explored interactively using parallel coordinates when being selected in the cluster tree. Furthermore, we integrate circular parallel coordinates into the radial hierarchical cluster tree layout, which allows for the analysis of the overall cluster distribution. This visual representation supports the comprehension of the relations between clusters and the original attributes. The combination of the 2D radial layout and the circular parallel coordinates is used to overcome the overplotting problem of parallel coordinates when looking into data sets with many records. We apply an automatic coloring scheme based on the 2D radial layout of the hierarchical cluster tree encoding hue, saturation, and value of the HSV color space. The colors support linking the 2D radial layout to other views such as the standard parallel coordinates or, in case data is obtained from multidimensional spatial data, the distribution in object space.
AbstractList Visual analytics of multidimensional multivariate data is a challenging task because of the difficulty in understanding metrics in attribute spaces with more than three dimensions. Frequently, the analysis goal is not to look into individual records but to understand the distribution of the records at large and to find clusters of records with similar attribute values. A large number of (typically hierarchical) clustering algorithms have been developed to group individual records to clusters of statistical significance. However, only few visualization techniques exist for further exploring and understanding the clustering results. We propose visualization and interaction methods for analyzing individual clusters as well as cluster distribution within and across levels in the cluster hierarchy. We also provide a clustering method that operates on density rather than individual records. To not restrict our search for clusters, we compute density in the given multidimensional multivariate space. Clusters are formed by areas of high density. We present an approach that automatically computes a hierarchical tree of high density clusters. To visually represent the cluster hierarchy, we present a 2D radial layout that supports an intuitive understanding of the distribution structure of the multidimensional multivariate data set. Individual clusters can be explored interactively using parallel coordinates when being selected in the cluster tree. Furthermore, we integrate circular parallel coordinates into the radial hierarchical cluster tree layout, which allows for the analysis of the overall cluster distribution. This visual representation supports the comprehension of the relations between clusters and the original attributes. The combination of the 2D radial layout and the circular parallel coordinates is used to overcome the overplotting problem of parallel coordinates when looking into data sets with many records. We apply an automatic coloring scheme based on the 2D radial layout of the hierarchical cluster tree encoding hue, saturation, and value of the HSV color space. The colors support linking the 2D radial layout to other views such as the standard parallel coordinates or, in case data is obtained from multidimensional spatial data, the distribution in object space. [PUBLICATION ABSTRACT]
Visual analytics of multidimensional multivariate data is a challenging task because of the difficulty in understanding metrics in attribute spaces with more than three dimensions. Frequently, the analysis goal is not to look into individual records but to understand the distribution of the records at large and to find clusters of records with similar attribute values. A large number of (typically hierarchical) clustering algorithms have been developed to group individual records to clusters of statistical significance. However, only few visualization techniques exist for further exploring and understanding the clustering results. We propose visualization and interaction methods for analyzing individual clusters as well as cluster distribution within and across levels in the cluster hierarchy. We also provide a clustering method that operates on density rather than individual records. To not restrict our search for clusters, we compute density in the given multidimensional multivariate space. Clusters are formed by areas of high density. We present an approach that automatically computes a hierarchical tree of high density clusters. To visually represent the cluster hierarchy, we present a 2D radial layout that supports an intuitive understanding of the distribution structure of the multidimensional multivariate data set. Individual clusters can be explored interactively using parallel coordinates when being selected in the cluster tree. Furthermore, we integrate circular parallel coordinates into the radial hierarchical cluster tree layout, which allows for the analysis of the overall cluster distribution. This visual representation supports the comprehension of the relations between clusters and the original attributes. The combination of the 2D radial layout and the circular parallel coordinates is used to overcome the overplotting problem of parallel coordinates when looking into data sets with many records. We apply an automatic coloring scheme based on the 2D radial layout of the hierarchical cluster tree encoding hue, saturation, and value of the HSV color space. The colors support linking the 2D radial layout to other views such as the standard parallel coordinates or, in case data is obtained from multidimensional spatial data, the distribution in object space.
Author Linsen, Lars
Van Long, Tran
Author_xml – sequence: 1
  givenname: Tran
  surname: Van Long
  fullname: Van Long, Tran
  organization: School of Engineering and Science Jacobs University Bremen, Germany
– sequence: 2
  givenname: Lars
  surname: Linsen
  fullname: Linsen, Lars
  organization: School of Engineering and Science Jacobs University Bremen, Germany
BookMark eNqNUctuGyEURVUq1Un6D6iL7mbKMDCPSq1UuYmdKG037kPdoDv4joqLBweY1Pn7MnaURVZhw4XzEJxzSk4GNyAhtGB5kda7TV6Iqs6aSrY5Z6zNWTo3-f4FmT0CJ2TGijTXTMpX5DSEDWNM1JWcEfdltNHM7Rgi-pVHfE-vhjSCjuYO6Q8TRrD0Yr-zzkM0bqCup0uTCF7_MTphD9pAzUAPZmuzxSEkagIPF3fgDUSknyHCOXnZgw34-mE_I98vL1bzZXbzbXE1_3STacHaJgPNsBAcawDZoUQUPeeyRQ0FCC7LVjOBfN2h6DrRtVC1fF3260RHEIzp8oy8PfruvLsdMUS1NUGjtTCgG4Mq0_dTJDwR3zwhbtzo09uDKlpRyUqULJE-HknauxA89kqbeIgjejBWFUxNZaiNmjJXU-ZqKkMdylD7ZNA8Mdh5swV__xzph6P0n7F4_2ydmi8upynps6PepJr2j3rwf1VVl7VUP78uFL_-tWqWv4Valf8B1wK19g
CitedBy_id crossref_primary_10_1007_s12650_019_00584_3
crossref_primary_10_1145_3340960
crossref_primary_10_1080_13658816_2010_513982
crossref_primary_10_1109_TVCG_2021_3061925
crossref_primary_10_1111_cgf_14034
crossref_primary_10_1186_1471_2105_15_S6_S4
crossref_primary_10_3390_informatics4030021
crossref_primary_10_1016_j_bdr_2019_07_001
crossref_primary_10_1109_TVCG_2013_150
crossref_primary_10_1109_TVCG_2010_138
crossref_primary_10_1002_widm_1093
crossref_primary_10_1177_1473871613481692
crossref_primary_10_1109_TVCG_2021_3057519
Cites_doi 10.1109/MC.2002.1016905
10.1007/BF01898350
10.1145/304182.304187
10.1111/j.1467-8659.2008.01239.x
10.1080/01621459.1990.10474926
10.1007/BF01908064
10.2307/3315985
10.1057/palgrave.ivs.9500117
ContentType Journal Article
Copyright 2009 The Author(s) Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.
2009 The Eurographics Association and Blackwell Publishing Ltd.
Copyright_xml – notice: 2009 The Author(s) Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.
– notice: 2009 The Eurographics Association and Blackwell Publishing Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/j.1467-8659.2009.01468.x
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Computer and Information Systems Abstracts
Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 830
ExternalDocumentID 1810708741
10_1111_j_1467_8659_2009_01468_x
CGF1468
ark_67375_WNG_2JXT8HZ4_T
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4098-ac0e142e7aa5be5ee4f2259eca1a42539c04e2dbe4bb4b9a692d3fd7aaea400c3
IEDL.DBID DRFUL
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000268217500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Tue Aug 05 09:02:34 EDT 2025
Fri Jul 25 23:43:31 EDT 2025
Sat Nov 29 03:41:04 EST 2025
Tue Nov 18 22:01:33 EST 2025
Sun Sep 21 06:19:33 EDT 2025
Sun Sep 21 06:22:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4098-ac0e142e7aa5be5ee4f2259eca1a42539c04e2dbe4bb4b9a692d3fd7aaea400c3
Notes ArticleID:CGF1468
istex:3F3BB216D4BC9A8ACC62B176C05A35F70B8802A2
ark:/67375/WNG-2JXT8HZ4-T
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 194656430
PQPubID 30877
PageCount 8
ParticipantIDs proquest_miscellaneous_34761672
proquest_journals_194656430
crossref_citationtrail_10_1111_j_1467_8659_2009_01468_x
crossref_primary_10_1111_j_1467_8659_2009_01468_x
wiley_primary_10_1111_j_1467_8659_2009_01468_x_CGF1468
istex_primary_ark_67375_WNG_2JXT8HZ4_T
PublicationCentury 2000
PublicationDate June 2009
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: June 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2009
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Jain A. K. (e_1_2_6_2_17_2) 1988
Scott D. W. (e_1_2_6_2_24_2) 2004
e_1_2_6_2_19_2
e_1_2_6_2_18_2
e_1_2_6_2_16_2
e_1_2_6_2_20_2
e_1_2_6_2_21_2
e_1_2_6_2_14_2
e_1_2_6_2_22_2
e_1_2_6_2_23_2
Fayyad U. (e_1_2_6_2_11_2) 2002
Card S. K. (e_1_2_6_2_9_2) 1999
Tollis I. G. (e_1_2_6_2_25_2) 1999
Duda R. O. (e_1_2_6_2_10_2) 2001
Wegman E. J. (e_1_2_6_2_27_2) 1990; 21
e_1_2_6_2_12_2
Han J. (e_1_2_6_2_15_2) 2006
e_1_2_6_2_26_2
Wong A. (e_1_2_6_2_28_2) 1983; 45
e_1_2_6_2_7_2
e_1_2_6_2_6_2
e_1_2_6_2_29_2
e_1_2_6_2_5_2
Cormen T. H. (e_1_2_6_2_8_2) 2001
Hartigan J. A. (e_1_2_6_2_13_2) 1975
References_xml – ident: e_1_2_6_2_23_2
  doi: 10.1109/MC.2002.1016905
– volume-title: Data Mining: Concepts and Techniques
  year: 2006
  ident: e_1_2_6_2_15_2
– volume-title: Clustering Algorithms
  year: 1975
  ident: e_1_2_6_2_13_2
– ident: e_1_2_6_2_22_2
– ident: e_1_2_6_2_20_2
– volume-title: Graph Drawing: Algorithms for the Visualization of Graphs
  year: 1999
  ident: e_1_2_6_2_25_2
– ident: e_1_2_6_2_26_2
– ident: e_1_2_6_2_16_2
  doi: 10.1007/BF01898350
– ident: e_1_2_6_2_29_2
– volume-title: Information Visualization in Data Mining and Knowledge Discovery
  year: 2002
  ident: e_1_2_6_2_11_2
– ident: e_1_2_6_2_18_2
– ident: e_1_2_6_2_5_2
  doi: 10.1145/304182.304187
– ident: e_1_2_6_2_21_2
  doi: 10.1111/j.1467-8659.2008.01239.x
– volume-title: Pattern Classification
  year: 2001
  ident: e_1_2_6_2_10_2
– volume: 21
  start-page: 664
  year: 1990
  ident: e_1_2_6_2_27_2
  article-title: Hyper‐dimensional data analysis using parallel coordinates
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1990.10474926
– ident: e_1_2_6_2_14_2
  doi: 10.1007/BF01908064
– ident: e_1_2_6_2_6_2
– volume-title: Readings in Information Visualization: Using Vision to Think
  year: 1999
  ident: e_1_2_6_2_9_2
– ident: e_1_2_6_2_12_2
– ident: e_1_2_6_2_7_2
  doi: 10.2307/3315985
– volume-title: Introduction to Algorithms, Second Edition
  year: 2001
  ident: e_1_2_6_2_8_2
– volume-title: Algorithms for Clustering Data
  year: 1988
  ident: e_1_2_6_2_17_2
– volume: 45
  start-page: 362
  year: 1983
  ident: e_1_2_6_2_28_2
  article-title: A kth nearest neighbor clustering procedure
  publication-title: Journal of the Royal Statistical Society, Series B
– ident: e_1_2_6_2_19_2
  doi: 10.1057/palgrave.ivs.9500117
– volume-title: Multidimensional Density Estimation, in Handbook of Statistics, Vol 23: Data Mining and Computational Statistics, Edited by C.R. Rao and E.J. Wegman
  year: 2004
  ident: e_1_2_6_2_24_2
SSID ssj0004765
Score 2.0302777
Snippet Visual analytics of multidimensional multivariate data is a challenging task because of the difficulty in understanding metrics in attribute spaces with more...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 823
SubjectTerms Algorithms
Clustering
Computer graphics
Computer Graphics [I.3.3]: Picture/Image Generation-Display Algorithms
Datasets
Multivariate analysis
Spatial data
Statistical significance
Studies
Visualization
Title MultiClusterTree: Interactive Visual Exploration of Hierarchical Clusters in Multidimensional Multivariate Data
URI https://api.istex.fr/ark:/67375/WNG-2JXT8HZ4-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-8659.2009.01468.x
https://www.proquest.com/docview/194656430
https://www.proquest.com/docview/34761672
Volume 28
WOSCitedRecordID wos000268217500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCaGZIftsPcwr3voMOzmwQ_Jlnob0qXBUATDkHbBLoIk00DQwBnipOjPryg7WYPtUAy7WqZgUyRFUeRHgA9-j0Ws6zyWeW2phZmIlZAmls4JhdbKPEApXZyV06mcz9W3Pv-JamE6fIh9wI00I9hrUnBj2z-VXBZC9bCTVEX0yfuTw8yLMR_A8OT7-Pzsd5VkWYgd0jdhyBzm9fx1roPNakh8vz7wRG_7s2FDGj_-n7_yBB71bin73MnRU7iHzTN4eAus8DmsQq3uaLklaIXZGvGYhXCiCRaTXSzarZ-hy-kLy81WNZssqMA59FtZsp62ZYuGhckqai3QwYJ0D678yd07v-zEbMwLOB9_mY0mcd-uIXacUEmNSzDlGZbGCIsCkdfeWCh0JjXeMuTKJRyzyiK3lltlCpVVeV3519F4S-LylzBoVg2-AlYghSeFs6lCnrnKKisTp1xZG5UUCiMod-uiXY9lTi01lvrgTFNqYil12lQ6sFRfR5DuKX91eB53oPkYln5PYNaXlA9XCv1jeqqzr_OZnPzkehbB0U42dG8KWp0qgqTjeRLB-_2o12G6mDENrratzr1oeqnMIiiCmNz5y_TolOAS5Ot_JTyCB931GIWV3sBgs97iW7jvrjaLdv2u16AbleEbYQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6hFgk48EaEBdYHxC0oDzuJuaEu3QKlQii7VFws25lIFVWKmna1Px-Pk5at4LBCXOOMldgz4_HY830Ar9wai1jXaViktSEKMxFKUeiwsFZINKZIPZTS-TSfzYr5XH7p6YCoFqbDh9gn3MgyvL8mA6eE9J9WXmRC9riTVEb0xgWUQ-60SgxgePJ1fDb9XSaZZ2IH9U0gMocXe_7a18FqNaSBvzwIRa8GtH5FGt_7r_9yH-72gSl712nSA7iBzUO4cwWu8BGsfLXuaLklcIVyjfiW-YSi9j6TnS_areuhu9XnJ5ytajZZUImzZ1xZsl62ZYuG-c4qIhfogEG6Bxdu7-7CX3aiN_oxnI3fl6NJ2BM2hJYTLqm2EcY8wVxrYVAg8tq5C4lWx9r5hlTaiGNSGeTGcCN1JpMqrSv3OmrnS2z6BAbNqsGnwDKkBKWwJpbIE1sZaYrISpvXWkaZxADy3cQo26OZE6nGUh3sanJFQ0pcm1L5IVWXAcR7yZ8dosc1ZF77ud8L6PUPuhGXC_VtdqqSj_OymHznqgzgaKccqncGrYolgdLxNArgeN_qrJiOZnSDq22rUqebTi2TADKvJ9f-MjU6JcCE4tm_Ch7DrUn5eaqmH2afjuB2d1hGSabnMNist_gCbtqLzaJdv-zN6ReR3R9R
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hFSF4GJ8TYcD8gHgLyoedxLyhlq5AVU2oGxUvlu1cpIoqnZp22p8_n5OWVfAwIV7jnJXYd-fz2ff7AbxzayxiVaVhkVaGKMxEKEWhw8JaIdGYIvVQShfjfDIpZjN51tEBUS1Miw-xS7iRZXh_TQaOl2X1p5UXmZAd7iSVEX1wAWWPC5k5K-0Nvg_Px7_LJPNMbKG-CURm_2LPX_vaW616NPDXe6Ho7YDWr0jDx__1X57AYReYsk-tJj2Fe1g_g0e34Aqfw9JX6_YXGwJXmK4QPzKfUNTeZ7KLebNxPbS3-vyEs2XFRnMqcfaMKwvWyTZsXjPfWUnkAi0wSPvgyu3dXfjLBnqtX8D58PO0Pwo7wobQcsIl1TbCmCeYay0MCkReOXch0epYO9-QShtxTEqD3BhupM5kUqZV6V5H7XyJTY_goF7W-BJYhpSgFNbEEnliSyNNEVlp80rLKJMYQL6dGGU7NHMi1ViovV1NrmhIiWtTKj-k6jqAeCd52SJ63EHmvZ_7nYBe_aIbcblQPyanKvk6mxajn1xNAzjeKofqnEGjYkmgdDyNAjjZtTorpqMZXeNy06jU6aZTyySAzOvJnb9M9U8JMKF49a-CJ_DgbDBU4y-Tb8fwsD0roxzTazhYrzb4Bu7bq_W8Wb3trOkG7VQezA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MultiClusterTree%3A+Interactive+Visual+Exploration+of+Hierarchical+Clusters+in+Multidimensional+Multivariate+Data&rft.jtitle=Computer+graphics+forum&rft.au=Van+Long%2C+Tran&rft.au=Linsen%2C+Lars&rft.date=2009-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=28&rft.issue=3&rft.spage=823&rft.epage=830&rft_id=info:doi/10.1111%2Fj.1467-8659.2009.01468.x&rft.externalDBID=10.1111%252Fj.1467-8659.2009.01468.x&rft.externalDocID=CGF1468
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon