A Discrete Particle Swarm Optimization Algorithm With Adaptive Inertia Weight for Solving Multiobjective Flexible Job-shop Scheduling Problem

A discrete particle swarm optimization algorithm with adaptive inertia weight (DPSO-AIW) is proposed to solve the multiobjective Flexible Job-shop Scheduling Problem. The algorithm uses a two-layer coding structure to encode the chromosomes, namely operation sequence (OS) and machine assignment (MA)...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 8; s. 33125 - 33136
Hlavní autori: Gu, Xiao-Lin, Huang, Ming, Liang, Xu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A discrete particle swarm optimization algorithm with adaptive inertia weight (DPSO-AIW) is proposed to solve the multiobjective Flexible Job-shop Scheduling Problem. The algorithm uses a two-layer coding structure to encode the chromosomes, namely operation sequence (OS) and machine assignment (MA). The initial population combined random selection of OS and the global selection based on operation (GSO) of MA. In order to obtain the Pareto optimal solution, non-dominated fronts are obtained by rapid non-dominated sorting. In the evolution process, the discrete particle swarm optimization algorithm is used to directly solve the values of the next generation chromosomes in the discrete domain, and the population diversity is enhanced by adaptively adjusting the variation of the inertia weight ω, and the Pareto optimal solution obtained in the process is stored in the Pareto optimal solution set (POS). Finally, numerical simulation based on two sets of international standard instances and comparisons with some existing algorithms are carried out. The comparative results demonstrate the effectiveness and practicability of the proposed DPSO-AIW in solving the multiobjective Flexible Job-shop Scheduling Problem.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2974014