Multi-objective combinatorial optimization analysis of the recycling of retired new energy electric vehicle power batteries in a sustainable dynamic reverse logistics network

The recycling of retired new energy vehicle power batteries produces economic benefits and promotes the sustainable development of environment and society. However, few attentions have been paid to the design and optimization of sustainable reverse logistics network for the recycling of retired powe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Environmental science and pollution research international Ročník 30; číslo 16; s. 47580 - 47601
Hlavní autori: Mu, Nengye, Wang, Yuanshun, Chen, Zhen-Song, Xin, Peiyuan, Deveci, Muhammet, Pedrycz, Witold
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2023
Springer Nature B.V
Predmet:
ISSN:1614-7499, 0944-1344, 1614-7499
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The recycling of retired new energy vehicle power batteries produces economic benefits and promotes the sustainable development of environment and society. However, few attentions have been paid to the design and optimization of sustainable reverse logistics network for the recycling of retired power batteries. To this end, we develop a six-level sustainable dynamic reverse logistics network model from the perspectives of economy, environment, and society. We solve the multi-objective combinatorial optimization model to explore the layout of the sustainable reverse logistics network for retired new energy vehicle power batteries recycling. A case study is implemented to verify the effectiveness of the proposed model. The results show that (a) the facility nodes near the front of the network fluctuate more by opening and closing; (b) the dynamic reverse logistics network is superior to its static counterpart; and (c) cooperation cost changes affect the transaction volume between third-party and cooperative enterprises and total network cost.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-023-25573-w