Airport Detection in SAR Images Via Salient Line Segment Detector and Edge-Oriented Region Growing

Airport detection in synthetic aperture radar (SAR) images has attracted much concern in the field of remote sensing. Affected by other salient objects with geometrical features similar to those of airports, traditional methods often generate false detections. In order to produce the geometrical fea...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing Vol. 14; pp. 314 - 326
Main Authors: Tu, Jun, Gao, Fei, Sun, Jinping, Hussain, Amir, Zhou, Huiyu
Format: Journal Article
Language:English
Published: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1939-1404, 2151-1535
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Airport detection in synthetic aperture radar (SAR) images has attracted much concern in the field of remote sensing. Affected by other salient objects with geometrical features similar to those of airports, traditional methods often generate false detections. In order to produce the geometrical features of airports and suppress the influence of irrelevant objects, we propose a novel method for airport detection in SAR images. First, a salient line segment detector is constructed to extract salient line segments in the SAR images. Second, we obtain the airport support regions by grouping these line segments according to the commonality of these geometrical features. Finally, we design an edge-oriented region growing (EORG) algorithm, where growing seeds are selected from the airport support regions with the help of edge information in SAR images. Using EORG, the airport region can be mapped by performing region growing with these seeds. We implement experiments on real radar images to validate the effectiveness of our method. The experimental results demonstrate that our method can acquire more accurate locations and contours of airports than several state-of-the-art airport detection algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1939-1404
2151-1535
DOI:10.1109/JSTARS.2020.3036052