Nano-Medicine for Treatment of Tuberculosis, Promising Approaches Against Antimicrobial Resistance

Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as a result of these drugs. This hurts the patients’ well-being and quality of life. Tumor cells that survive treatment modalities can become ch...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Current microbiology Ročník 81; číslo 10; s. 326
Hlavní autoři: Mobed, Ahmad, Alivirdiloo, Vahid, Gholami, Sarah, Moshari, Amirreza, Mousavizade, Azamsadat, Naderian, Ramtin, Ghazi, Farhood
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2024
Springer Nature B.V
Témata:
ISSN:0343-8651, 1432-0991, 1432-0991
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as a result of these drugs. This hurts the patients’ well-being and quality of life. Tumor cells that survive treatment modalities can become chemotherapy resistant at the molecular level. Furthermore, negative effects on normal cells occur concurrently. Strategies that minimize the negative effects on normal cells while efficiently targeting infected cells are required. Nanotherapies, according to recent research, may be one option in this direction. The present study differs from previously published review studies as it concentrates on examining the most recently developed nanoparticles for anti-mycobacterial purposes. Such novel approaches have the potential to reduce harmful side effects and improve patients’ health prognoses. Current paper provides a comprehensive analysis of recent advances in nanotherapy systems for the pulmonary delivery of anti-tuberculous drugs. In addition, to low-priced and convenient alternatives for pulmonary delivery, different types of NPs for oral and topical application were also deliberated and summarized in this review. Graphical Abstract
AbstractList Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as a result of these drugs. This hurts the patients' well-being and quality of life. Tumor cells that survive treatment modalities can become chemotherapy resistant at the molecular level. Furthermore, negative effects on normal cells occur concurrently. Strategies that minimize the negative effects on normal cells while efficiently targeting infected cells are required. Nanotherapies, according to recent research, may be one option in this direction. The present study differs from previously published review studies as it concentrates on examining the most recently developed nanoparticles for anti-mycobacterial purposes. Such novel approaches have the potential to reduce harmful side effects and improve patients' health prognoses. Current paper provides a comprehensive analysis of recent advances in nanotherapy systems for the pulmonary delivery of anti-tuberculous drugs. In addition, to low-priced and convenient alternatives for pulmonary delivery, different types of NPs for oral and topical application were also deliberated and summarized in this review.
Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as a result of these drugs. This hurts the patients’ well-being and quality of life. Tumor cells that survive treatment modalities can become chemotherapy resistant at the molecular level. Furthermore, negative effects on normal cells occur concurrently. Strategies that minimize the negative effects on normal cells while efficiently targeting infected cells are required. Nanotherapies, according to recent research, may be one option in this direction. The present study differs from previously published review studies as it concentrates on examining the most recently developed nanoparticles for anti-mycobacterial purposes. Such novel approaches have the potential to reduce harmful side effects and improve patients’ health prognoses. Current paper provides a comprehensive analysis of recent advances in nanotherapy systems for the pulmonary delivery of anti-tuberculous drugs. In addition, to low-priced and convenient alternatives for pulmonary delivery, different types of NPs for oral and topical application were also deliberated and summarized in this review. Graphical Abstract
Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as a result of these drugs. This hurts the patients' well-being and quality of life. Tumor cells that survive treatment modalities can become chemotherapy resistant at the molecular level. Furthermore, negative effects on normal cells occur concurrently. Strategies that minimize the negative effects on normal cells while efficiently targeting infected cells are required. Nanotherapies, according to recent research, may be one option in this direction. The present study differs from previously published review studies as it concentrates on examining the most recently developed nanoparticles for anti-mycobacterial purposes. Such novel approaches have the potential to reduce harmful side effects and improve patients' health prognoses. Current paper provides a comprehensive analysis of recent advances in nanotherapy systems for the pulmonary delivery of anti-tuberculous drugs. In addition, to low-priced and convenient alternatives for pulmonary delivery, different types of NPs for oral and topical application were also deliberated and summarized in this review.Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as a result of these drugs. This hurts the patients' well-being and quality of life. Tumor cells that survive treatment modalities can become chemotherapy resistant at the molecular level. Furthermore, negative effects on normal cells occur concurrently. Strategies that minimize the negative effects on normal cells while efficiently targeting infected cells are required. Nanotherapies, according to recent research, may be one option in this direction. The present study differs from previously published review studies as it concentrates on examining the most recently developed nanoparticles for anti-mycobacterial purposes. Such novel approaches have the potential to reduce harmful side effects and improve patients' health prognoses. Current paper provides a comprehensive analysis of recent advances in nanotherapy systems for the pulmonary delivery of anti-tuberculous drugs. In addition, to low-priced and convenient alternatives for pulmonary delivery, different types of NPs for oral and topical application were also deliberated and summarized in this review.
Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as a result of these drugs. This hurts the patients’ well-being and quality of life. Tumor cells that survive treatment modalities can become chemotherapy resistant at the molecular level. Furthermore, negative effects on normal cells occur concurrently. Strategies that minimize the negative effects on normal cells while efficiently targeting infected cells are required. Nanotherapies, according to recent research, may be one option in this direction. The present study differs from previously published review studies as it concentrates on examining the most recently developed nanoparticles for anti-mycobacterial purposes. Such novel approaches have the potential to reduce harmful side effects and improve patients’ health prognoses. Current paper provides a comprehensive analysis of recent advances in nanotherapy systems for the pulmonary delivery of anti-tuberculous drugs. In addition, to low-priced and convenient alternatives for pulmonary delivery, different types of NPs for oral and topical application were also deliberated and summarized in this review.
ArticleNumber 326
Author Alivirdiloo, Vahid
Ghazi, Farhood
Gholami, Sarah
Naderian, Ramtin
Mousavizade, Azamsadat
Mobed, Ahmad
Moshari, Amirreza
Author_xml – sequence: 1
  givenname: Ahmad
  orcidid: 0000-0001-8939-3688
  surname: Mobed
  fullname: Mobed, Ahmad
  email: Mobed1980@gmail.com
  organization: Department of Community Medicine, Faculty of Medicine, Social Determinants of Health Research Center, Tabriz University of Medical Sciences
– sequence: 2
  givenname: Vahid
  surname: Alivirdiloo
  fullname: Alivirdiloo, Vahid
  organization: Medical Doctor Ramsar Campus, Mazandaran University of Medical Sciences
– sequence: 3
  givenname: Sarah
  surname: Gholami
  fullname: Gholami, Sarah
  organization: Young Researchers and Ellie Club, Babol Branch. Islamic Azad University
– sequence: 4
  givenname: Amirreza
  surname: Moshari
  fullname: Moshari, Amirreza
  organization: Shahid Beheshti University of Medical Sciences
– sequence: 5
  givenname: Azamsadat
  surname: Mousavizade
  fullname: Mousavizade, Azamsadat
  organization: National Institute of Genetic Engineering and Biotechnology (NIGEB)
– sequence: 6
  givenname: Ramtin
  surname: Naderian
  fullname: Naderian, Ramtin
  organization: Student Committee of Medical Education Development, Education Development Center, Semnan University of Medical Science, Student Research Committee, Semnan University of Medical Sciences
– sequence: 7
  givenname: Farhood
  surname: Ghazi
  fullname: Ghazi, Farhood
  organization: Stem Cell Research Center, Tabriz University of Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39182006$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vFSEUhompsbfVP-DCTOLGhaMHGIZhedP4ldSPmOuaMMzhSjMDV2AW9tdLvW1MuqgLYPM8Jy_nPSMnIQYk5DmFNxRAvs0AbOhaYPXwQfD2-hHZ0I6zFpSiJ2QDvOPt0At6Ss5yvgKgTAF9Qk65ogMD6Ddk_GJCbD_j5K0P2LiYml1CUxYMpYmu2a0jJrvOMfv8uvmW4uKzD_tmezikaOxPzM12b3zIpdmG4hdvUxy9mZvvWI1igsWn5LEzc8Znt-85-fH-3e7iY3v59cOni-1lazsYSuuEmTqOAMZQVM5IQ5VTkvFJSsaMQCOmvnd87Nk09hxwnKauXhak5FY5fk5eHefWZL9WzEXXrBbn2QSMa9acCi6ZVKL_PwpK0k7xgVb05T30Kq4p1I_cUL0YQHSiUi9uqXVccNKH5BeTfuu7RVdgOAJ1PzkndNr6YoqPoSTjZ01B33Sqj53q2qn-26m-riq7p95Nf1DiRylXOOwx_Yv9gPUHuOO0lA
CitedBy_id crossref_primary_10_5599_admet_2774
crossref_primary_10_1016_j_jddst_2025_106912
Cites_doi 10.2147/IJN.S364634
10.1556/1886.2021.00021
10.1016/j.bioadv.2022.213003
10.1016/j.bcab.2019.101327
10.1080/01616412.2021.1979749
10.1016/j.ijid.2019.02.035
10.1016/j.jsps.2020.10.008
10.1016/j.ejps.2022.106261
10.1016/j.jddst.2019.05.025
10.1128/msphere.00443-19
10.1080/02652048.2022.2025935
10.1186/s12951-023-02156-y
10.1088/2053-1591/ab08ff
10.1016/j.ijtb.2020.02.005
10.1183/20734735.0079-2021
10.3390/pharmaceutics14081543
10.1080/10837450.2020.1852570
10.1016/j.ijpharm.2010.03.017
10.1128/iai.00291-19
10.1016/j.carbpol.2023.121449
10.1038/s41565-021-00866-8
10.3389/fphar.2022.906097
10.1039/D3CP05457H
10.1016/j.brainresbull.2014.05.007
10.1016/j.btre.2020.e00427
10.1016/B978-0-323-99278-7.00011-0
10.3390/tropicalmed8020100
10.1007/s10311-020-01074-x
10.1016/j.jmb.2019.02.016
10.1002/adtp.202000113
10.2174/1567201817999201103194626
10.18231/j.ijmmtd.2020.045
10.1039/D0NR01456G
10.3389/fmicb.2020.00800
10.1007/s11033-021-06611-7
10.1016/j.molstruc.2022.133452
10.3390/pharmaceutics16020216
10.1007/s13346-020-00849-7
10.1016/j.jddst.2020.102013
10.1128/iai.72.5.2564-2573.2004
10.1016/j.addr.2016.04.012
10.3390/nano12020177
10.22034/ijnc.2022.3.6
10.1007/978-3-031-50349-8_118
10.1186/s12889-017-4089-y
10.1155/2017/4920209
10.1016/B978-0-08-101975-7.00005-1
10.1039/C9TB00784A
10.1016/j.meegid.2019.103937
10.3390/ijms20122868
10.1039/D0CE00440E
10.1089/jamp.2022.0078
10.3390/antibiotics9090569
10.1016/j.jctube.2023.100412
10.5958/2231-5691.2018.00033.3
10.1016/j.carbpol.2020.116978
10.1136/bmjgh-2019-002280
10.1016/B978-0-323-91201-3.00007-4
10.1371/journal.pone.0212858
10.1002/adhm.202100453
10.1111/apt.16952
10.1002/jin2.61
10.1080/1061186X.2019.1613409
10.1039/D0TA05183G
10.1016/j.carbpol.2019.04.056
10.1155/2020/7372531
10.1016/j.physe.2021.115077
10.22038/ijbms.2023.69295.15100
10.1016/j.coph.2018.05.013
10.1016/j.microc.2021.106900
10.1016/j.lfs.2020.117961
10.1016/j.tube.2021.102083
10.3390/ijms15045852
10.1016/j.ijpharm.2021.121097
10.3389/fmicb.2018.01367
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7T7
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
7S9
L.6
DOI 10.1007/s00284-024-03853-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Research Library Prep
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1432-0991
EndPage 326
ExternalDocumentID 39182006
10_1007_s00284_024_03853_z
Genre Journal Article
Review
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3O-
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6NX
78A
7X7
88A
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8G5
8TC
8UJ
95-
95.
95~
96X
A8Z
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYJJ
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0L
M1P
M2O
M4Y
M7P
MA-
MM.
N2Q
N9A
NB0
NDZJH
NEJ
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
PF-
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
Z7U
Z7V
Z7W
Z7Y
Z87
Z8O
Z8P
Z8Q
Z8S
Z91
ZCG
ZMTXR
ZOVNA
ZXP
~02
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
7TK
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ESTFP
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c408t-f5ad43e00aa1e9fa7a19f9723d7722a5ea5d66f3b62db630ebdd4ebdc0773c9f3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001300260500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0343-8651
1432-0991
IngestDate Thu Oct 02 06:04:29 EDT 2025
Wed Oct 01 10:33:14 EDT 2025
Wed Nov 26 14:51:16 EST 2025
Wed Feb 19 02:02:44 EST 2025
Sat Nov 29 04:52:32 EST 2025
Tue Nov 18 21:33:15 EST 2025
Fri Feb 21 02:38:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-f5ad43e00aa1e9fa7a19f9723d7722a5ea5d66f3b62db630ebdd4ebdc0773c9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8939-3688
PMID 39182006
PQID 3096580545
PQPubID 54062
PageCount 1
ParticipantIDs proquest_miscellaneous_3153727956
proquest_miscellaneous_3097149381
proquest_journals_3096580545
pubmed_primary_39182006
crossref_citationtrail_10_1007_s00284_024_03853_z
crossref_primary_10_1007_s00284_024_03853_z
springer_journals_10_1007_s00284_024_03853_z
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Current microbiology
PublicationTitleAbbrev Curr Microbiol
PublicationTitleAlternate Curr Microbiol
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References GeorgeEGoswamiALodhiyaTPadwalPIyerSGauttamISethiLJeyasankarSSharmaPRDravidAAImmunomodulatory effect of mycobacterial outer membrane vesicles coated nanoparticlesBioRxiv202210.1016/j.bioadv.2022.213003354113518996620
SundararajanSMuniyanRLatent tuberculosis: interaction of virulence factors in Mycobacterium tuberculosisMole Biol Rep2021488618161961:CAS:528:DC%2BB3MXhslartL7K10.1007/s11033-021-06611-7
MukhtarMCsabaNRoblaSVarela-CalviñoRNagyABurianKKókaiDAmbrusRDry powder comprised of isoniazid-loaded nanoparticles of hyaluronic acid in conjugation with mannose-anchored chitosan for macrophage-targeted pulmonary administration in tuberculosisPharmaceutics202214815431:CAS:528:DC%2BB38Xitleisr3O10.3390/pharmaceutics14081543358937999330414
PilcerGAmighiKFormulation strategy and use of excipients in pulmonary drug deliveryInt J Pharm20103921–21191:CAS:528:DC%2BC3cXmtVGku7g%3D10.1016/j.ijpharm.2010.03.01720223286
NolanCMBlumbergHMTaylorZBernardoJAmerican thoracic society/centers for disease control and prevention/infectious diseases society of America: Controlling tuberculosis in the United StatesAm J Respir Crit Care Med20051729116910.1016/j.ijtb.2020.02.005
GrobbelaarMLouwGESampsonSLvan HeldenPDDonaldPRWarrenRMEvolution of rifampicin treatment for tuberculosisInfect Genet Evol2019741039371:CAS:528:DC%2BC1MXht1GitrfN10.1016/j.meegid.2019.10393731247337
JadounSArifRJangidNKMeenaRKGreen synthesis of nanoparticles using plant extracts: a reviewEnviron Chem Lett20211913553741:CAS:528:DC%2BB3cXhs1Sgsr3N10.1007/s10311-020-01074-x
BeitzingerBGerblFVomhofTSchmidRNoschkaRRodriguezAWieseSWeidingerGStändkerLWaltherPDelivery by dendritic mesoporous silica nanoparticles enhances the antimicrobial activity of a napsin-derived peptide against intracellular Mycobacterium tuberculosisAdv Healthcare Mater2021101421004531:CAS:528:DC%2BB3MXhtlKmtLjF10.1002/adhm.202100453
ChoiS-RBritiganBENarayanasamyPTreatment of virulent Mycobacterium tuberculosis and HIV coinfected macrophages with gallium nanoparticles inhibits pathogen growth and modulates macrophage cytokine productionMsphere201944e00443e5191:CAS:528:DC%2BC1MXhvVWnsb3N10.1128/msphere.00443-19313410736656872
KochACoxHMizrahiVDrug-resistant tuberculosis: challenges and opportunities for diagnosis and treatmentCurr Opin Pharmacol2018427151:CAS:528:DC%2BC1cXhtVKjtb7N10.1016/j.coph.2018.05.013298856236219890
DiedericksBKokA-MMandiwanaVLallNA review of the Potential of Poly-(lactide-co-glycolide) Nanoparticles as a Delivery System for an active antimycobacterial compound, 7-methyljuglonePharmaceutics20241622161:CAS:528:DC%2BB2cXkvFylt7Y%3D10.3390/pharmaceutics160202163839927010893214
MaCWuMYeWHuangZMaXWangWWangWHuangYPanXWuCInhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: macrophage-targeting and pH-sensitive propertiesDrug Deliv Transl Res2021113121812351:CAS:528:DC%2BB3cXhvVyqtb3K10.1007/s13346-020-00849-732946043
DonnellanSGiardielloMNanomedicines towards targeting intracellular Mtb for the treatment of tuberculosisJ Interdiscip Nanomed201943768510.1002/jin2.61
Oga-OmenkaCTseja-AkinrinASenPMac-SeingMAgbajeAMenziesDZarowskyCFactors influencing diagnosis and treatment initiation for multidrug-resistant/rifampicin-resistant tuberculosis in six sub-Saharan African countries: a mixed-methods systematic reviewBMJ Glob Health202057e00228010.1136/bmjgh-2019-002280326164817333807
VilchèzeCJacobsWRJrThe isoniazid paradigm of killing, resistance, and persistence in Mycobacterium tuberculosisJ Mol Biol201943118345034611:CAS:528:DC%2BC1MXktFeiu7o%3D10.1016/j.jmb.2019.02.016307978606703971
JavadiFYazdiMETBaghaniMEs-haghiABiosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activitiesMater Res Express2019660654081:CAS:528:DC%2BC1MXps1yju7g%3D10.1088/2053-1591/ab08ff
MoghaddamMDJamehbozorgiSRezvaniMIzadkhahVMoghimMTTheoretical treatment of interaction of pyrazinamide with graphene and h-SiC monolayer: a DFT-D3 studyPhys E Low-Dimens Syst Nanostruct20221381150771:CAS:528:DC%2BB38XmvVKrtrw%3D10.1016/j.physe.2021.115077
NairAGreenyANandanASahRKJoseADyawanapellySJunnuthulaVA. K. V, P. Sadanandan,Advanced drug delivery and therapeutic strategies for tuberculosis treatmentJ Nanobiotechnol202321141410.1186/s12951-023-02156-y
AbdelghanySParumasivamTPangARoedigerBTangPJahnKBrittonWJChanH-KAlginate modified-PLGA nanoparticles entrapping amikacin and moxifloxacin as a novel host-directed therapy for multidrug-resistant tuberculosisJ Drug Delivery Sci Technol2019526426511:CAS:528:DC%2BC1MXhtVGhsL%2FK10.1016/j.jddst.2019.05.025
SinghKKRole of nanotechnology and nanomaterials for water treatment and environmental remediationInt J New Chem2022933733981:CAS:528:DC%2BB38XjtlOjt74%3D10.22034/ijnc.2022.3.6
ZargarnezhadSGholamiAKhoshneviszadehMAbootalebiSNGhasemiY2020 Antimicrobial activity of isoniazid in conjugation with surface-modified magnetic nanoparticles against Mycobacterium tuberculosis and nonmycobacterial microorganismsJ Nanomater202010.1155/2020/7372531
SimõesMFOttoniCAAntunesAMycogenic metal nanoparticles for the treatment of mycobacteriosesAntibiotics2020995691:CAS:528:DC%2BB3cXisFCmtrzK10.3390/antibiotics9090569328873587559022
VieiraACChavesLLPinheiroMLimaSCNetoPJRFerreiraDSarmentoBReisSLipid nanoparticles coated with chitosan using a one-step association method to target rifampicin to alveolar macrophagesCarbohyd Polym20212521169781:CAS:528:DC%2BB3cXitVyms7bE10.1016/j.carbpol.2020.116978
MadkourLHProcessing of nanomaterials (NMs)Nanoelectronic Mater201910.1016/B978-0-323-99278-7.00011-0
CostaAPinheiroMMagalhãesJRibeiroRSeabraVReisSSarmentoBThe formulation of nanomedicines for treating tuberculosisAdv Drug Deliv Rev20161021021151:CAS:528:DC%2BC28XmslSgsb8%3D10.1016/j.addr.2016.04.01227108703
YulugBHanogluLKilicESchabitzWRRIFAMPICIN: an antibiotic with brain protective functionBrain Res Bull201410737421:CAS:528:DC%2BC2cXhtlCjsb7L10.1016/j.brainresbull.2014.05.00724905548
SinghAGautamPKVermaASinghVShivapriyaPMShivalkarSSahooAKSamantaSKGreen synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: a reviewBiotechnol Rep202025e0042710.1016/j.btre.2020.e00427
PandeyRPKumarSAhmadSVibhutiARajVSVermaAKSharmaPLealEUse Chou’s 5-steps rule to evaluate protective efficacy induced by antigenic proteins of Mycobacterium tuberculosis encapsulated in chitosan nanoparticlesLife Sci20202561179611:CAS:528:DC%2BB3cXht1Wlt7nK10.1016/j.lfs.2020.11796132534039
T.N. Jilani, A. Avula, Z. Gondal, A.H. Siddiqui, Active tuberculosis, (2018). https://europepmc.org/article/nbk/nbk513246
N.A. Aleixo, P.S.d.S. Gomes, P.B.d. Silva, M.R. Sato, D.L. Campos, H.d.S. Barud, G.R. Castro, G.A. Islan, C. Toledo, F. Karp, M. Chorilli, F.R. Pavan, F.A. Resende, Study of antimycobacterial, cytotoxic, and mutagenic potential of polymeric nanoparticles of copper (II) complex, Journal of Microencapsulation 39(1) (2022) 61–71. https://doi.org/10.1080/02652048.2022.2025935
FergusonJSWeisJJMartinJLSchlesingerLSComplement protein C3 binding to Mycobacterium tuberculosis is initiated by the classical pathway in human bronchoalveolar lavage fluidInfect Immu2004725256425731:CAS:528:DC%2BD2cXjslajsbY%3D10.1128/iai.72.5.2564-2573.2004
Borah SlaterKKimDChandPXuYShaikhHUndaleVA current perspective on the potential of nanomedicine for anti-tuberculosis therapyTrop Med Infect Dis20238210010.3390/tropicalmed8020100368285169965948
EstevezHPalaciosAGilDAnguitaJVallet-RegiMGonzálezBPrados-RosalesRLuque-GarciaJLAntimycobacterial effect of selenium nanoparticles on mycobacterium tuberculosisFront Microbiol20201180010.3389/fmicb.2020.00800324259167212347
BanerjeeSRoySBhaumikKNPillaiJMechanisms of the effectiveness of lipid nanoparticle formulations loaded with anti-tubercular drugs combinations toward overcoming drug bioavailability in tuberculosisJ Drug Target202028155691:CAS:528:DC%2BC1MXht1OqtLnJ10.1080/1061186X.2019.161340931035816
TenlandEPochertAKrishnanNUmashankar RaoKKalsumSBraunKGlegola-MadejskaILermMRobertsonBDLindénMEffective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticlesPLoS ONE2019142e02128581:CAS:528:DC%2BC1MXmtFaksLg%3D10.1371/journal.pone.0212858308076126391042
MachadoDGirardiniMViveirosMPieroniMChallenging the drug-likeness dogma for new drug discovery in tuberculosisFront Microbiol20189136710.3389/fmicb.2018.01367300185976037898
AkkiMReddyDSKatagiKSKumarADevarajegowdaHCBabagondVManeSJoshiSDSynthesis of coumarin–thioether conjugates as potential anti-tubercular agents: their molecular docking and X-ray crystal studiesJ Mol Struct202212661334521:CAS:528:DC%2BB38XhsFGhs77L10.1016/j.molstruc.2022.133452
NasiruddinMNeyazMKDasSNanotechnology-based approach in tuberculosis treatmentTuberc Res Treat201710.1155/2017/4920209282105055292193
BaranyaiZSoria-CarreraHAllevaMMillán-PlacerACLucíaAMartín-RapúnRAínsaJAde la FuenteJMNanotechnology-based targeted drug delivery: an emerging tool to overcome tuberculosisAdv Ther202141200011310.1002/adtp.202000113
KirtaneARVermaMKarandikarPFurinJLangerRTraversoGNanotechnology approaches for global infectious diseasesNature Nanotechnol20211643693841:CAS:528:DC%2BB3MXntVOrs7s%3D10.1038/s41565-021-00866-8
KiaPRumanUPratiwiARHusseinMZInnovative therapeutic approaches based on nanotechnology for the treatment and management of tuberculosisInt J Nanomedicine202318115911911:CAS:528:DC%2BB3sXlsVCksro%3D10.2147/IJN.S3646343691909510008450
RaoMIppolitoGMfinangaSNtoumiFYeboah-ManuDVilaplanaCZumlaAMaeurerMLatent TB Infection (LTBI)–Mycobacterium tuberculosis pathogenesis and the dynamics of the granuloma battlegroundInt J Infect Dis201980S58S6110.1016/j.ijid.2019.02.035
ChaGDLeeWHLimCChoiMKKimD-HMaterials engineering, processing, and device application of hydrogel nanocompositesNanoscale2020121910456104731:CAS:528:DC%2BB3cXovFyktr8%3D10.1039/D0NR01456G32388540
de OliveiraPFTorresiRMEmmerlingFCamargoPHChallenges and opportunities in the bottom-up mechanochemical synthesis of
SR Fehily (3853_CR16) 2022
GB Migliori (3853_CR17) 2021
A Barhoum (3853_CR35) 2022; 12
3853_CR1
3853_CR68
3853_CR67
G Pilcer (3853_CR6) 2010; 392
M Rao (3853_CR2) 2019; 80
E George (3853_CR55) 2022
TR Sterling (3853_CR13) 2020
A Singh (3853_CR22) 2020; 25
3853_CR4
M Paranjpe (3853_CR5) 2014; 15
G Xu (3853_CR34) 2021; 128
AM Hoffmann (3853_CR78) 2022
A Mobed (3853_CR25) 2023; 34
E Torfs (3853_CR10) 2019; 20
S Donnellan (3853_CR45) 2019; 4
S Jadoun (3853_CR43) 2021; 19
A Yousefi Avarvand (3853_CR76) 2024; 27
MD Moghaddam (3853_CR26) 2022; 138
F Javadi (3853_CR42) 2019; 6
S Abdelghany (3853_CR53) 2019; 52
3853_CR11
H Estevez (3853_CR72) 2020; 11
SR Sagavkar (3853_CR3) 2018; 8
J Jayabalan (3853_CR44) 2019; 21
C Hutchison (3853_CR21) 2017; 17
K Borah Slater (3853_CR48) 2023; 8
R Ma (3853_CR66) 2022; 44
M Nasiruddin (3853_CR46) 2017
K Parmar (3853_CR77) 2014; 37
M Heidary (3853_CR18) 2022; 12
C Oga-Omenka (3853_CR20) 2020; 5
LH Madkour (3853_CR39) 2019
RP Pandey (3853_CR50) 2020; 256
M Grobbelaar (3853_CR33) 2019; 74
ER Zaki (3853_CR64) 2021
MD Ganji (3853_CR24) 2024; 26
S-R Choi (3853_CR70) 2019; 4
V Ramalingam (3853_CR49) 2019; 7
A Sharma (3853_CR62) 2021; 608
M Mukhtar (3853_CR63) 2022; 14
E Tenland (3853_CR71) 2019; 14
C Ma (3853_CR54) 2021; 11
3853_CR41
MF Simões (3853_CR19) 2020; 9
M Akki (3853_CR28) 2022; 1266
D Machado (3853_CR12) 2018; 9
LMDG Primo (3853_CR73) 2024; 323
M Fazal-ur-Rehman (3853_CR40) 2019; 5
S Shah (3853_CR60) 2021; 18
P Zhu (3853_CR52) 2022; 176
B Diedericks (3853_CR74) 2024; 16
S Sundararajan (3853_CR14) 2021; 48
C Vilchèze (3853_CR30) 2019; 431
A Costa (3853_CR27) 2016; 102
S Ahmad (3853_CR58) 2019; 87
S Zargarnezhad (3853_CR56) 2020
KK Singh (3853_CR36) 2022; 9
P Kia (3853_CR80) 2023; 18
AR Kirtane (3853_CR7) 2021; 16
A Koch (3853_CR29) 2018; 42
B Yulug (3853_CR32) 2014; 107
B Beitzinger (3853_CR57) 2021; 10
3853_CR75
AC Vieira (3853_CR61) 2021; 252
N Changsan (3853_CR65) 2021; 26
A Nair (3853_CR79) 2023; 21
A Jha (3853_CR8) 2022
GD Cha (3853_CR38) 2020; 12
Z Baranyai (3853_CR47) 2021; 4
JS Ferguson (3853_CR23) 2004; 72
CM Nolan (3853_CR15) 2005; 172
A Mobed (3853_CR9) 2022; 172
S Shah (3853_CR69) 2020; 60
K Zhang (3853_CR31) 2020; 22
S Banerjee (3853_CR59) 2020; 28
DM Pawde (3853_CR51) 2020; 28
PF de Oliveira (3853_CR37) 2020; 8
References_xml – reference: FehilySRAl-AniAHAbdelmalakJRentchCZhangEDenholmJTJohnsonDNgSCSharmaVRubinDTLatent tuberculosis in patients with inflammatory bowel diseases receiving immunosuppression—risks, screening, diagnosis and managementAliment Pharmacol Ther202210.1111/apt.16952355962429325436
– reference: Oga-OmenkaCTseja-AkinrinASenPMac-SeingMAgbajeAMenziesDZarowskyCFactors influencing diagnosis and treatment initiation for multidrug-resistant/rifampicin-resistant tuberculosis in six sub-Saharan African countries: a mixed-methods systematic reviewBMJ Glob Health202057e00228010.1136/bmjgh-2019-002280326164817333807
– reference: ParanjpeMMüller-GoymannCCNanoparticle-mediated pulmonary drug delivery: a reviewInt J Mol Sci2014154585258731:CAS:528:DC%2BC2cXhtlWltbnM10.3390/ijms15045852247174094013600
– reference: HutchisonCKhanMYoongJLinXCokerRFinancial barriers and coping strategies: a qualitative study of accessing multidrug-resistant tuberculosis and tuberculosis care in Yunnan ChinaBMC Public Health201717111110.1186/s12889-017-4089-y
– reference: KochACoxHMizrahiVDrug-resistant tuberculosis: challenges and opportunities for diagnosis and treatmentCurr Opin Pharmacol2018427151:CAS:528:DC%2BC1cXhtVKjtb7N10.1016/j.coph.2018.05.013298856236219890
– reference: N.A. Aleixo, P.S.d.S. Gomes, P.B.d. Silva, M.R. Sato, D.L. Campos, H.d.S. Barud, G.R. Castro, G.A. Islan, C. Toledo, F. Karp, M. Chorilli, F.R. Pavan, F.A. Resende, Study of antimycobacterial, cytotoxic, and mutagenic potential of polymeric nanoparticles of copper (II) complex, Journal of Microencapsulation 39(1) (2022) 61–71. https://doi.org/10.1080/02652048.2022.2025935
– reference: ZhangKFellahNShtukenbergAGFuXHuCWardMDDiscovery of new polymorphs of the tuberculosis drug isoniazidCryst Eng Comm20202216270527081:CAS:528:DC%2BB3cXms1Wjtro%3D10.1039/D0CE00440E
– reference: IE Uwidia EU Ikhuoria RO Okojie IH Ifijen ID Chikaodili 2024 Synthesis of ternary oxide nanoparticles of iron silver and vanadium from blended extracts for potential tuberculosis treatment TMS Annual Meeting & Exhibition Springer pp 1375–1386. https://doi.org/10.1007/978-3-031-50349-8_118
– reference: Fazal-ur-RehmanMQayyumIIbrahimMNanotechnology: an innovation in scientific research and technologyCurr Sci201954859
– reference: Yousefi AvarvandAMeshkatZKhademiFAryanESankianMTafaghodiMEnhancement of the immunogenicity of a Mycobacterium tuberculosis fusion protein using ISCOMATRIX and PLUSCOM nano-adjuvants as prophylactic vaccine after nasal administration in miceIran J Basic Med Sci2024271243010.22038/ijbms.2023.69295.151003816448110722485
– reference: CostaAPinheiroMMagalhãesJRibeiroRSeabraVReisSSarmentoBThe formulation of nanomedicines for treating tuberculosisAdv Drug Deliv Rev20161021021151:CAS:528:DC%2BC28XmslSgsb8%3D10.1016/j.addr.2016.04.01227108703
– reference: JadounSArifRJangidNKMeenaRKGreen synthesis of nanoparticles using plant extracts: a reviewEnviron Chem Lett20211913553741:CAS:528:DC%2BB3cXhs1Sgsr3N10.1007/s10311-020-01074-x
– reference: AbdelghanySParumasivamTPangARoedigerBTangPJahnKBrittonWJChanH-KAlginate modified-PLGA nanoparticles entrapping amikacin and moxifloxacin as a novel host-directed therapy for multidrug-resistant tuberculosisJ Drug Delivery Sci Technol2019526426511:CAS:528:DC%2BC1MXhtVGhsL%2FK10.1016/j.jddst.2019.05.025
– reference: SimõesMFOttoniCAAntunesAMycogenic metal nanoparticles for the treatment of mycobacteriosesAntibiotics2020995691:CAS:528:DC%2BB3cXisFCmtrzK10.3390/antibiotics9090569328873587559022
– reference: DiedericksBKokA-MMandiwanaVLallNA review of the Potential of Poly-(lactide-co-glycolide) Nanoparticles as a Delivery System for an active antimycobacterial compound, 7-methyljuglonePharmaceutics20241622161:CAS:528:DC%2BB2cXkvFylt7Y%3D10.3390/pharmaceutics160202163839927010893214
– reference: RamalingamVSundaramahalingamSRajaramRSize-dependent antimycobacterial activity of titanium oxide nanoparticles against Mycobacterium tuberculosisJ Mater Chem B2019727433843461:CAS:528:DC%2BC1MXhtFWks7nO10.1039/C9TB00784A
– reference: SagavkarSRDevkarSRTuberculosis: a review, AsianJ Pharm Res20188319119410.5958/2231-5691.2018.00033.3
– reference: SundararajanSMuniyanRLatent tuberculosis: interaction of virulence factors in Mycobacterium tuberculosisMole Biol Rep2021488618161961:CAS:528:DC%2BB3MXhslartL7K10.1007/s11033-021-06611-7
– reference: Borah SlaterKKimDChandPXuYShaikhHUndaleVA current perspective on the potential of nanomedicine for anti-tuberculosis therapyTrop Med Infect Dis20238210010.3390/tropicalmed8020100368285169965948
– reference: ChoiS-RBritiganBENarayanasamyPTreatment of virulent Mycobacterium tuberculosis and HIV coinfected macrophages with gallium nanoparticles inhibits pathogen growth and modulates macrophage cytokine productionMsphere201944e00443e5191:CAS:528:DC%2BC1MXhvVWnsb3N10.1128/msphere.00443-19313410736656872
– reference: TenlandEPochertAKrishnanNUmashankar RaoKKalsumSBraunKGlegola-MadejskaILermMRobertsonBDLindénMEffective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticlesPLoS ONE2019142e02128581:CAS:528:DC%2BC1MXmtFaksLg%3D10.1371/journal.pone.0212858308076126391042
– reference: PilcerGAmighiKFormulation strategy and use of excipients in pulmonary drug deliveryInt J Pharm20103921–21191:CAS:528:DC%2BC3cXmtVGku7g%3D10.1016/j.ijpharm.2010.03.01720223286
– reference: EstevezHPalaciosAGilDAnguitaJVallet-RegiMGonzálezBPrados-RosalesRLuque-GarciaJLAntimycobacterial effect of selenium nanoparticles on mycobacterium tuberculosisFront Microbiol20201180010.3389/fmicb.2020.00800324259167212347
– reference: AkkiMReddyDSKatagiKSKumarADevarajegowdaHCBabagondVManeSJoshiSDSynthesis of coumarin–thioether conjugates as potential anti-tubercular agents: their molecular docking and X-ray crystal studiesJ Mol Struct202212661334521:CAS:528:DC%2BB38XhsFGhs77L10.1016/j.molstruc.2022.133452
– reference: DonnellanSGiardielloMNanomedicines towards targeting intracellular Mtb for the treatment of tuberculosisJ Interdiscip Nanomed201943768510.1002/jin2.61
– reference: BanerjeeSRoySBhaumikKNPillaiJMechanisms of the effectiveness of lipid nanoparticle formulations loaded with anti-tubercular drugs combinations toward overcoming drug bioavailability in tuberculosisJ Drug Target202028155691:CAS:528:DC%2BC1MXht1OqtLnJ10.1080/1061186X.2019.161340931035816
– reference: PrimoLMDGRoque-BordaCACarnero CanalesCSCarusoIPde LourençoIOColturatoVMMSábioRMde MeloFAVicenteEFChorilliMda Silva BarudHBarbugliPAFranzykHHansenPRPavanFRAntimicrobial peptides grafted onto the surface of N-acetylcysteine-chitosan nanoparticles can revitalize drugs against clinical isolates of Mycobacterium tuberculosisCarbohyd Polym20243231214491:CAS:528:DC%2BB3sXitVGqtLjO10.1016/j.carbpol.2023.121449
– reference: JayabalanJManiGKrishnanNPernabasJDevadossJMJangHTGreen biogenic synthesis of zinc oxide nanoparticles using Pseudomonas putida culture and its in vitro antibacterial and anti-biofilm activityBiocatal Agric Biotechnol20192110132710.1016/j.bcab.2019.101327
– reference: MoghaddamMDJamehbozorgiSRezvaniMIzadkhahVMoghimMTTheoretical treatment of interaction of pyrazinamide with graphene and h-SiC monolayer: a DFT-D3 studyPhys E Low-Dimens Syst Nanostruct20221381150771:CAS:528:DC%2BB38XmvVKrtrw%3D10.1016/j.physe.2021.115077
– reference: T.N. Jilani, A. Avula, Z. Gondal, A.H. Siddiqui, Active tuberculosis, (2018). https://europepmc.org/article/nbk/nbk513246
– reference: MadkourLHProcessing of nanomaterials (NMs)Nanoelectronic Mater201910.1016/B978-0-323-99278-7.00011-0
– reference: AhmadSBhattacharyaDKarSRanganathanAVan KaerLDasGCurcumin nanoparticles enhance Mycobacterium bovis BCG vaccine efficacy by modulating host immune responsesInfect Immun20198711e00291e3191:CAS:528:DC%2BC1MXitlKltLrP10.1128/iai.00291-19314814126803339
– reference: HoffmannAMWolkeMRybnikerJPlumGFuchsFIn vitro activity of repurposed nitroxoline against clinically isolated mycobacteria including multidrug-resistant Mycobacterium tuberculosisFront Pharmacol202210.3389/fphar.2022.906097363396019634131
– reference: MobedADarvishiMKohansalFDehfooliFMAlipourfardITahavvoriAGhaziFBiosensors; nanomaterial-based methods in diagnosing of Mycobacterium tuberculosisJ Clin Tuberc Other Mycobact Dis20233410.1016/j.jctube.2023.1004123822286210787265
– reference: JavadiFYazdiMETBaghaniMEs-haghiABiosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activitiesMater Res Express2019660654081:CAS:528:DC%2BC1MXps1yju7g%3D10.1088/2053-1591/ab08ff
– reference: HeidaryMShiraniMMoradiMGoudarziMPouriranRRezaeianTKhoshnoodSTuberculosis challenges: resistance, co-infection, diagnosis, and treatmentEur J Microbiol Immunol20221211171:CAS:528:DC%2BB38XhvFOmsL3I10.1556/1886.2021.00021
– reference: PawdeDMViswanadhMKMehataAKSonkarRPoddarSBurandeASJhaAVajanthriKYMahtoSKDustakeerVAMannose receptor targeted bioadhesive chitosan nanoparticles of clofazimine for effective therapy of tuberculosisSaudi Pharm J20202812161616251:CAS:528:DC%2BB3MXlt1Wmsg%3D%3D10.1016/j.jsps.2020.10.008334242547783224
– reference: SterlingTRNjieGZennerDCohnDLRevesRAhmedAMenziesDHorsburghCRCraneCMBurgosMGuidelines for the treatment of latent tuberculosis infectionRecommendations from the National Tuberculosis Controllers Association and CDC2020HobokenWiley11961206
– reference: AV Rane K Kanny VK Abitha S Thomas 2018 Chapter—5 methods for synthesis of nanoparticles and Fabrication of Nanocomposites. In: S Mohan Bhagyaraj, OS Oluwafemi, N Kalarikkal, S Thomas (eds) Synthesis of inorganic nanomaterials, Woodhead Publishing, Swaston, pp 121-139 https://doi.org/10.1016/B978-0-08-101975-7.00005-1
– reference: ZhuPCaiLLiuQFengSRuanHZhangLZhouLJiangHWangHWangJChenJOne-pot synthesis of α-Linolenic acid nanoemulsion-templated drug-loaded silica mesocomposites as efficient bactericide against drug-resistant Mycobacterium tuberculosisEur J Pharm Sci20221761062611:CAS:528:DC%2BB38XhvFWktLjM10.1016/j.ejps.2022.10626135840102
– reference: ShahSCristopherDSharmaSSoniwalaMChavdaJInhalable linezolid loaded PLGA nanoparticles for treatment of tuberculosis: design, development and in vitro evaluationJournal of Drug Delivery Science and Technology2020601020131:CAS:528:DC%2BB3cXhvVSls7%2FL10.1016/j.jddst.2020.102013
– reference: World Health Organization (2021) Meeting report of the WHO expert consultation on the definition of extensively drugresistant tuberculosis, 27–29 October 2020. World Health Organization
– reference: BarhoumAGarcía-BetancourtMLJeevanandamJHussienEAMekkawySAMostafaMOmranMMAbdallaMSBechelanyMReview on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulationsNanomaterials20221221771:CAS:528:DC%2BB38XitFCnsb4%3D10.3390/nano12020177350551968780156
– reference: MukhtarMCsabaNRoblaSVarela-CalviñoRNagyABurianKKókaiDAmbrusRDry powder comprised of isoniazid-loaded nanoparticles of hyaluronic acid in conjugation with mannose-anchored chitosan for macrophage-targeted pulmonary administration in tuberculosisPharmaceutics202214815431:CAS:528:DC%2BB38Xitleisr3O10.3390/pharmaceutics14081543358937999330414
– reference: MiglioriGBOngCWPetroneLD'AmbrosioLCentisRGolettiDThe definition of tuberculosis infection based on the spectrum of tuberculosis diseaseBreathe202110.1183/20734735.0079-2021350355498753649
– reference: ChangsanNSinsuebpolCDry powder inhalation formulation of chitosan nanoparticles for co-administration of isoniazid and pyrazinamidePharm Dev Technol20212621811921:CAS:528:DC%2BB3cXisVagt7rN10.1080/10837450.2020.185257033213232
– reference: VilchèzeCJacobsWRJrThe isoniazid paradigm of killing, resistance, and persistence in Mycobacterium tuberculosisJ Mol Biol201943118345034611:CAS:528:DC%2BC1MXktFeiu7o%3D10.1016/j.jmb.2019.02.016307978606703971
– reference: BaranyaiZSoria-CarreraHAllevaMMillán-PlacerACLucíaAMartín-RapúnRAínsaJAde la FuenteJMNanotechnology-based targeted drug delivery: an emerging tool to overcome tuberculosisAdv Ther202141200011310.1002/adtp.202000113
– reference: NasiruddinMNeyazMKDasSNanotechnology-based approach in tuberculosis treatmentTuberc Res Treat201710.1155/2017/4920209282105055292193
– reference: XuGLiuHJiaXWangXXuPMechanisms and detection methods of Mycobacterium tuberculosis rifampicin resistance: the phenomenon of drug resistance is complexTuberculosis20211281020831:CAS:528:DC%2BB3MXhtFGnu7vK10.1016/j.tube.2021.10208333975262
– reference: World Health Organization (2021) Meeting report of the WHO expert consultation on the definition of extensively drug-resistant tuberculosis, 27–29 October 2020. World Health Organization
– reference: GeorgeEGoswamiALodhiyaTPadwalPIyerSGauttamISethiLJeyasankarSSharmaPRDravidAAImmunomodulatory effect of mycobacterial outer membrane vesicles coated nanoparticlesBioRxiv202210.1016/j.bioadv.2022.213003354113518996620
– reference: KiaPRumanUPratiwiARHusseinMZInnovative therapeutic approaches based on nanotechnology for the treatment and management of tuberculosisInt J Nanomedicine202318115911911:CAS:528:DC%2BB3sXlsVCksro%3D10.2147/IJN.S3646343691909510008450
– reference: ShahSGhetiyaRSoniwalaMChavdaJDevelopment and optimization of inhalable levofloxacin nanoparticles for the treatment of tuberculosisCurr Drug Deliv20211867797931:CAS:528:DC%2BB3MXitF2hu7%2FK10.2174/156720181799920110319462633155907
– reference: MobedAHasanzadehMSensitive recognition of Shiga toxin using biosensor technology: an efficient platform towards bioanalysis of pathogenic bacterialMicrochem J20221721069001:CAS:528:DC%2BB3MXit1KgsrbM10.1016/j.microc.2021.106900
– reference: KirtaneARVermaMKarandikarPFurinJLangerRTraversoGNanotechnology approaches for global infectious diseasesNature Nanotechnol20211643693841:CAS:528:DC%2BB3MXntVOrs7s%3D10.1038/s41565-021-00866-8
– reference: TorfsEPillerTCosPCappoenDOpportunities for overcoming Mycobacterium tuberculosis drug resistance: emerging mycobacterial targets and host-directed therapyInt J Mol Sci2019201228681:CAS:528:DC%2BB3cXhtFGlu7s%3D10.3390/ijms20122868312127776627145
– reference: GrobbelaarMLouwGESampsonSLvan HeldenPDDonaldPRWarrenRMEvolution of rifampicin treatment for tuberculosisInfect Genet Evol2019741039371:CAS:528:DC%2BC1MXht1GitrfN10.1016/j.meegid.2019.10393731247337
– reference: JhaAPathakYPolymeric nanomaterials for infectious diseases, nanotheranostics for Treatment and Diagnosis of Infectious DiseasesElsevier202210.1016/B978-0-323-91201-3.00007-4
– reference: NolanCMBlumbergHMTaylorZBernardoJAmerican thoracic society/centers for disease control and prevention/infectious diseases society of America: Controlling tuberculosis in the United StatesAm J Respir Crit Care Med20051729116910.1016/j.ijtb.2020.02.005
– reference: de OliveiraPFTorresiRMEmmerlingFCamargoPHChallenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticlesJ Materials Chem A2020832161141614110.1039/D0TA05183G
– reference: PandeyRPKumarSAhmadSVibhutiARajVSVermaAKSharmaPLealEUse Chou’s 5-steps rule to evaluate protective efficacy induced by antigenic proteins of Mycobacterium tuberculosis encapsulated in chitosan nanoparticlesLife Sci20202561179611:CAS:528:DC%2BB3cXht1Wlt7nK10.1016/j.lfs.2020.11796132534039
– reference: MachadoDGirardiniMViveirosMPieroniMChallenging the drug-likeness dogma for new drug discovery in tuberculosisFront Microbiol20189136710.3389/fmicb.2018.01367300185976037898
– reference: VieiraACChavesLLPinheiroMLimaSCNetoPJRFerreiraDSarmentoBReisSLipid nanoparticles coated with chitosan using a one-step association method to target rifampicin to alveolar macrophagesCarbohyd Polym20212521169781:CAS:528:DC%2BB3cXitVyms7bE10.1016/j.carbpol.2020.116978
– reference: ChaGDLeeWHLimCChoiMKKimD-HMaterials engineering, processing, and device application of hydrogel nanocompositesNanoscale2020121910456104731:CAS:528:DC%2BB3cXovFyktr8%3D10.1039/D0NR01456G32388540
– reference: GanjiMDKoHJamehbozorgiSTajbakhshMTanrehSPahlavan NejadRSepahvandMRezvaniMUnravelling performance of honeycomb structures as drug delivery systems for the isoniazid drug using DFT-D3 correction dispersion and molecular dynamic simulationsPhy Chem Chem Phys2024261814018140361:CAS:528:DC%2BB2cXpt1Srt74%3D10.1039/D3CP05457H
– reference: RaoMIppolitoGMfinangaSNtoumiFYeboah-ManuDVilaplanaCZumlaAMaeurerMLatent TB Infection (LTBI)–Mycobacterium tuberculosis pathogenesis and the dynamics of the granuloma battlegroundInt J Infect Dis201980S58S6110.1016/j.ijid.2019.02.035
– reference: MaRZhangJChenZMaHLiuXLiangSWuPGeZTreatment of spinal tuberculosis in rabbits using bovine serum albumin nanoparticles loaded with isoniazid and rifampicinNeurol Res20224432682741:CAS:528:DC%2BB3MXit1GgsbvO10.1080/01616412.2021.197974934581255
– reference: SharmaAGaurAKumarVSharmaNPatilSAVermaRKSinghAKAntimicrobial activity of synthetic antimicrobial peptides loaded in poly-Ɛ-caprolactone nanoparticles against mycobacteria and their functional synergy with rifampicinInt J Pharm20216081210971:CAS:528:DC%2BB3MXitVyksrzL10.1016/j.ijpharm.2021.12109734534632
– reference: ParmarKSondarvaSAerosolizable pyrazinamide-loaded biodegradable nanoparticles for the management of pulmonary tuberculosisJ Aerosol Med Pulm Drug Deli201437130401:CAS:528:DC%2BB2cXjs1KmsLs%3D10.1089/jamp.2022.0078
– reference: BeitzingerBGerblFVomhofTSchmidRNoschkaRRodriguezAWieseSWeidingerGStändkerLWaltherPDelivery by dendritic mesoporous silica nanoparticles enhances the antimicrobial activity of a napsin-derived peptide against intracellular Mycobacterium tuberculosisAdv Healthcare Mater2021101421004531:CAS:528:DC%2BB3MXhtlKmtLjF10.1002/adhm.202100453
– reference: SinghAGautamPKVermaASinghVShivapriyaPMShivalkarSSahooAKSamantaSKGreen synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: a reviewBiotechnol Rep202025e0042710.1016/j.btre.2020.e00427
– reference: ZakiERMohsenDMEldeinDKYousefMBFagirMHChitosan nanoparticles biosynthesis and characterization for Inhalation as an operative treatment of tuberculosisIP Int J Med Microbiol Trop Dis202110.18231/j.ijmmtd.2020.045
– reference: FergusonJSWeisJJMartinJLSchlesingerLSComplement protein C3 binding to Mycobacterium tuberculosis is initiated by the classical pathway in human bronchoalveolar lavage fluidInfect Immu2004725256425731:CAS:528:DC%2BD2cXjslajsbY%3D10.1128/iai.72.5.2564-2573.2004
– reference: R.Y. Basha, S.K. TS, M. Doble, Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages, Carbohydrate polymers 218 (2019) 53–62. https://doi.org/10.1016/j.carbpol.2019.04.056
– reference: NairAGreenyANandanASahRKJoseADyawanapellySJunnuthulaVA. K. V, P. Sadanandan,Advanced drug delivery and therapeutic strategies for tuberculosis treatmentJ Nanobiotechnol202321141410.1186/s12951-023-02156-y
– reference: SinghKKRole of nanotechnology and nanomaterials for water treatment and environmental remediationInt J New Chem2022933733981:CAS:528:DC%2BB38XjtlOjt74%3D10.22034/ijnc.2022.3.6
– reference: YulugBHanogluLKilicESchabitzWRRIFAMPICIN: an antibiotic with brain protective functionBrain Res Bull201410737421:CAS:528:DC%2BC2cXhtlCjsb7L10.1016/j.brainresbull.2014.05.00724905548
– reference: ZargarnezhadSGholamiAKhoshneviszadehMAbootalebiSNGhasemiY2020 Antimicrobial activity of isoniazid in conjugation with surface-modified magnetic nanoparticles against Mycobacterium tuberculosis and nonmycobacterial microorganismsJ Nanomater202010.1155/2020/7372531
– reference: MaCWuMYeWHuangZMaXWangWWangWHuangYPanXWuCInhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: macrophage-targeting and pH-sensitive propertiesDrug Deliv Transl Res2021113121812351:CAS:528:DC%2BB3cXhvVyqtb3K10.1007/s13346-020-00849-732946043
– volume: 18
  start-page: 1159
  year: 2023
  ident: 3853_CR80
  publication-title: Int J Nanomedicine
  doi: 10.2147/IJN.S364634
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: 3853_CR18
  publication-title: Eur J Microbiol Immunol
  doi: 10.1556/1886.2021.00021
– year: 2022
  ident: 3853_CR55
  publication-title: BioRxiv
  doi: 10.1016/j.bioadv.2022.213003
– ident: 3853_CR11
– volume: 21
  start-page: 101327
  year: 2019
  ident: 3853_CR44
  publication-title: Biocatal Agric Biotechnol
  doi: 10.1016/j.bcab.2019.101327
– volume: 44
  start-page: 268
  issue: 3
  year: 2022
  ident: 3853_CR66
  publication-title: Neurol Res
  doi: 10.1080/01616412.2021.1979749
– start-page: 1196
  volume-title: Recommendations from the National Tuberculosis Controllers Association and CDC
  year: 2020
  ident: 3853_CR13
– volume: 80
  start-page: S58
  year: 2019
  ident: 3853_CR2
  publication-title: Int J Infect Dis
  doi: 10.1016/j.ijid.2019.02.035
– volume: 28
  start-page: 1616
  issue: 12
  year: 2020
  ident: 3853_CR51
  publication-title: Saudi Pharm J
  doi: 10.1016/j.jsps.2020.10.008
– volume: 176
  start-page: 106261
  year: 2022
  ident: 3853_CR52
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2022.106261
– volume: 52
  start-page: 642
  year: 2019
  ident: 3853_CR53
  publication-title: J Drug Delivery Sci Technol
  doi: 10.1016/j.jddst.2019.05.025
– volume: 4
  start-page: e00443
  issue: 4
  year: 2019
  ident: 3853_CR70
  publication-title: Msphere
  doi: 10.1128/msphere.00443-19
– ident: 3853_CR67
  doi: 10.1080/02652048.2022.2025935
– volume: 21
  start-page: 414
  issue: 1
  year: 2023
  ident: 3853_CR79
  publication-title: J Nanobiotechnol
  doi: 10.1186/s12951-023-02156-y
– volume: 6
  start-page: 065408
  issue: 6
  year: 2019
  ident: 3853_CR42
  publication-title: Mater Res Express
  doi: 10.1088/2053-1591/ab08ff
– volume: 172
  start-page: 1169
  issue: 9
  year: 2005
  ident: 3853_CR15
  publication-title: Am J Respir Crit Care Med
  doi: 10.1016/j.ijtb.2020.02.005
– year: 2021
  ident: 3853_CR17
  publication-title: Breathe
  doi: 10.1183/20734735.0079-2021
– volume: 14
  start-page: 1543
  issue: 8
  year: 2022
  ident: 3853_CR63
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics14081543
– volume: 26
  start-page: 181
  issue: 2
  year: 2021
  ident: 3853_CR65
  publication-title: Pharm Dev Technol
  doi: 10.1080/10837450.2020.1852570
– volume: 392
  start-page: 1
  issue: 1–2
  year: 2010
  ident: 3853_CR6
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2010.03.017
– ident: 3853_CR1
– volume: 87
  start-page: e00291
  issue: 11
  year: 2019
  ident: 3853_CR58
  publication-title: Infect Immun
  doi: 10.1128/iai.00291-19
– volume: 323
  start-page: 121449
  year: 2024
  ident: 3853_CR73
  publication-title: Carbohyd Polym
  doi: 10.1016/j.carbpol.2023.121449
– volume: 16
  start-page: 369
  issue: 4
  year: 2021
  ident: 3853_CR7
  publication-title: Nature Nanotechnol
  doi: 10.1038/s41565-021-00866-8
– year: 2022
  ident: 3853_CR78
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2022.906097
– volume: 26
  start-page: 14018
  issue: 18
  year: 2024
  ident: 3853_CR24
  publication-title: Phy Chem Chem Phys
  doi: 10.1039/D3CP05457H
– volume: 107
  start-page: 37
  year: 2014
  ident: 3853_CR32
  publication-title: Brain Res Bull
  doi: 10.1016/j.brainresbull.2014.05.007
– volume: 25
  start-page: e00427
  year: 2020
  ident: 3853_CR22
  publication-title: Biotechnol Rep
  doi: 10.1016/j.btre.2020.e00427
– year: 2019
  ident: 3853_CR39
  publication-title: Nanoelectronic Mater
  doi: 10.1016/B978-0-323-99278-7.00011-0
– volume: 8
  start-page: 100
  issue: 2
  year: 2023
  ident: 3853_CR48
  publication-title: Trop Med Infect Dis
  doi: 10.3390/tropicalmed8020100
– volume: 19
  start-page: 355
  issue: 1
  year: 2021
  ident: 3853_CR43
  publication-title: Environ Chem Lett
  doi: 10.1007/s10311-020-01074-x
– volume: 5
  start-page: 48
  year: 2019
  ident: 3853_CR40
  publication-title: Curr Sci
– volume: 431
  start-page: 3450
  issue: 18
  year: 2019
  ident: 3853_CR30
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2019.02.016
– volume: 4
  start-page: 2000113
  issue: 1
  year: 2021
  ident: 3853_CR47
  publication-title: Adv Ther
  doi: 10.1002/adtp.202000113
– volume: 18
  start-page: 779
  issue: 6
  year: 2021
  ident: 3853_CR60
  publication-title: Curr Drug Deliv
  doi: 10.2174/1567201817999201103194626
– year: 2021
  ident: 3853_CR64
  publication-title: IP Int J Med Microbiol Trop Dis
  doi: 10.18231/j.ijmmtd.2020.045
– volume: 12
  start-page: 10456
  issue: 19
  year: 2020
  ident: 3853_CR38
  publication-title: Nanoscale
  doi: 10.1039/D0NR01456G
– volume: 11
  start-page: 800
  year: 2020
  ident: 3853_CR72
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.00800
– volume: 48
  start-page: 6181
  issue: 8
  year: 2021
  ident: 3853_CR14
  publication-title: Mole Biol Rep
  doi: 10.1007/s11033-021-06611-7
– volume: 1266
  start-page: 133452
  year: 2022
  ident: 3853_CR28
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2022.133452
– ident: 3853_CR4
– volume: 16
  start-page: 216
  issue: 2
  year: 2024
  ident: 3853_CR74
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics16020216
– volume: 11
  start-page: 1218
  issue: 3
  year: 2021
  ident: 3853_CR54
  publication-title: Drug Deliv Transl Res
  doi: 10.1007/s13346-020-00849-7
– volume: 60
  start-page: 102013
  year: 2020
  ident: 3853_CR69
  publication-title: Journal of Drug Delivery Science and Technology
  doi: 10.1016/j.jddst.2020.102013
– volume: 72
  start-page: 2564
  issue: 5
  year: 2004
  ident: 3853_CR23
  publication-title: Infect Immu
  doi: 10.1128/iai.72.5.2564-2573.2004
– volume: 102
  start-page: 102
  year: 2016
  ident: 3853_CR27
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2016.04.012
– volume: 12
  start-page: 177
  issue: 2
  year: 2022
  ident: 3853_CR35
  publication-title: Nanomaterials
  doi: 10.3390/nano12020177
– volume: 9
  start-page: 373
  issue: 3
  year: 2022
  ident: 3853_CR36
  publication-title: Int J New Chem
  doi: 10.22034/ijnc.2022.3.6
– ident: 3853_CR75
  doi: 10.1007/978-3-031-50349-8_118
– volume: 17
  start-page: 1
  issue: 1
  year: 2017
  ident: 3853_CR21
  publication-title: BMC Public Health
  doi: 10.1186/s12889-017-4089-y
– year: 2017
  ident: 3853_CR46
  publication-title: Tuberc Res Treat
  doi: 10.1155/2017/4920209
– ident: 3853_CR41
  doi: 10.1016/B978-0-08-101975-7.00005-1
– volume: 7
  start-page: 4338
  issue: 27
  year: 2019
  ident: 3853_CR49
  publication-title: J Mater Chem B
  doi: 10.1039/C9TB00784A
– volume: 74
  start-page: 103937
  year: 2019
  ident: 3853_CR33
  publication-title: Infect Genet Evol
  doi: 10.1016/j.meegid.2019.103937
– volume: 20
  start-page: 2868
  issue: 12
  year: 2019
  ident: 3853_CR10
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20122868
– volume: 22
  start-page: 2705
  issue: 16
  year: 2020
  ident: 3853_CR31
  publication-title: Cryst Eng Comm
  doi: 10.1039/D0CE00440E
– volume: 37
  start-page: 30
  issue: 1
  year: 2014
  ident: 3853_CR77
  publication-title: J Aerosol Med Pulm Drug Deli
  doi: 10.1089/jamp.2022.0078
– volume: 9
  start-page: 569
  issue: 9
  year: 2020
  ident: 3853_CR19
  publication-title: Antibiotics
  doi: 10.3390/antibiotics9090569
– volume: 34
  year: 2023
  ident: 3853_CR25
  publication-title: J Clin Tuberc Other Mycobact Dis
  doi: 10.1016/j.jctube.2023.100412
– volume: 8
  start-page: 191
  issue: 3
  year: 2018
  ident: 3853_CR3
  publication-title: J Pharm Res
  doi: 10.5958/2231-5691.2018.00033.3
– volume: 252
  start-page: 116978
  year: 2021
  ident: 3853_CR61
  publication-title: Carbohyd Polym
  doi: 10.1016/j.carbpol.2020.116978
– volume: 5
  start-page: e002280
  issue: 7
  year: 2020
  ident: 3853_CR20
  publication-title: BMJ Glob Health
  doi: 10.1136/bmjgh-2019-002280
– year: 2022
  ident: 3853_CR8
  publication-title: Elsevier
  doi: 10.1016/B978-0-323-91201-3.00007-4
– volume: 14
  start-page: e0212858
  issue: 2
  year: 2019
  ident: 3853_CR71
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0212858
– volume: 10
  start-page: 2100453
  issue: 14
  year: 2021
  ident: 3853_CR57
  publication-title: Adv Healthcare Mater
  doi: 10.1002/adhm.202100453
– year: 2022
  ident: 3853_CR16
  publication-title: Aliment Pharmacol Ther
  doi: 10.1111/apt.16952
– volume: 4
  start-page: 76
  issue: 3
  year: 2019
  ident: 3853_CR45
  publication-title: J Interdiscip Nanomed
  doi: 10.1002/jin2.61
– volume: 28
  start-page: 55
  issue: 1
  year: 2020
  ident: 3853_CR59
  publication-title: J Drug Target
  doi: 10.1080/1061186X.2019.1613409
– volume: 8
  start-page: 16114
  issue: 32
  year: 2020
  ident: 3853_CR37
  publication-title: J Materials Chem A
  doi: 10.1039/D0TA05183G
– ident: 3853_CR68
  doi: 10.1016/j.carbpol.2019.04.056
– year: 2020
  ident: 3853_CR56
  publication-title: J Nanomater
  doi: 10.1155/2020/7372531
– volume: 138
  start-page: 115077
  year: 2022
  ident: 3853_CR26
  publication-title: Phys E Low-Dimens Syst Nanostruct
  doi: 10.1016/j.physe.2021.115077
– volume: 27
  start-page: 24
  issue: 1
  year: 2024
  ident: 3853_CR76
  publication-title: Iran J Basic Med Sci
  doi: 10.22038/ijbms.2023.69295.15100
– volume: 42
  start-page: 7
  year: 2018
  ident: 3853_CR29
  publication-title: Curr Opin Pharmacol
  doi: 10.1016/j.coph.2018.05.013
– volume: 172
  start-page: 106900
  year: 2022
  ident: 3853_CR9
  publication-title: Microchem J
  doi: 10.1016/j.microc.2021.106900
– volume: 256
  start-page: 117961
  year: 2020
  ident: 3853_CR50
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2020.117961
– volume: 128
  start-page: 102083
  year: 2021
  ident: 3853_CR34
  publication-title: Tuberculosis
  doi: 10.1016/j.tube.2021.102083
– volume: 15
  start-page: 5852
  issue: 4
  year: 2014
  ident: 3853_CR5
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms15045852
– volume: 608
  start-page: 121097
  year: 2021
  ident: 3853_CR62
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2021.121097
– volume: 9
  start-page: 1367
  year: 2018
  ident: 3853_CR12
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.01367
SSID ssj0012901
Score 2.4194655
SecondaryResourceType review_article
Snippet Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 326
SubjectTerms Animals
antibiotic resistance
Antimicrobial resistance
Antitubercular Agents - pharmacology
Antitubercular Agents - therapeutic use
Biomedical and Life Sciences
Biotechnology
Chemotherapy
Drug delivery
Drug Delivery Systems - methods
Drug resistance
Drug Resistance, Bacterial
Drugs
Humans
Life Sciences
Microbiology
Mycobacterium tuberculosis - drug effects
nanomedicine
Nanomedicine - methods
Nanoparticles
Nanoparticles - chemistry
neoplasms
Quality of life
Review
Side effects
Topical application
Tuberculosis
Tuberculosis - drug therapy
Tuberculosis - microbiology
Tumor cells
Well being
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BAYlLy1dh24KMxI1aOHESJ6dqVbXiANUKLai3yJ8oUknazS5S--s79jqpUNW9cMnFjjLKjO1nv_EbgE8JQlCZWkmZVpxmKlG0YtbQPOGl0rlkMsgX__omzs7K8_NqFg_c-phWOcyJYaI2nfZn5F94kClBgJEfXV5RXzXKs6uxhMZjeOJVEnhI3ZuNLILnCAOLkHFaFnkSL82Eq3N-s5FRXKGo58Y4vfl3YbqHNu8xpWEBOt35X9NfwHaEnmS6jpWX8Mi2r-DZuhjl9WtQONF29Hvk2gmCWTIfstBJ58h8pexCry66vukPyWzRYYSgoWQaVcltT6a_ZYNwk0zbZfOnCRJP-MEftvcgFaPrDfw8PZkff6WxAgPVGSuX1OXSZNwyJmViKyeFTCrn65QZBOWpzK3MTVE4rorUqIIzq4zJ8KGZEFxXju_CVtu19h0QWwrHEymEsyIrrCsrpVOXZ4ZrLnBenkAy_P5aR3lyXyXjoh6FlYPLanRZHVxW30zg8_jO5VqcY2Pvg8E9dRyofX3nmwl8HJvxB3reRLa2W4U-AjeSiG029MHoQyiIu80JvF1HzGgSr7xKPsOWwyGE7gx42N69zfbuw_PUh29ILDyAreViZd_DU_132fSLD2Eg3AJtNA5r
  priority: 102
  providerName: ProQuest
Title Nano-Medicine for Treatment of Tuberculosis, Promising Approaches Against Antimicrobial Resistance
URI https://link.springer.com/article/10.1007/s00284-024-03853-z
https://www.ncbi.nlm.nih.gov/pubmed/39182006
https://www.proquest.com/docview/3096580545
https://www.proquest.com/docview/3097149381
https://www.proquest.com/docview/3153727956
Volume 81
WOSCitedRecordID wos001300260500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1432-0991
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012901
  issn: 0343-8651
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_WdoO-tN1n03VBg72tAtmyLfsxHS19WLOQZSVvRpKlYujsESeD9a_vSbFdSj9gfREYna3jfNL9xEm_A_gSIASVoZGUacVppAJFM2YKGgc8VTqWTHr64ovvYjxO5_Ns0l4Ka7rT7l1K0q_U_WU3tz2IKMYU6rJZnF5vwBaGu9RNx-nPiz534DKDPncQcZomcdBelXn4G3fD0T2MeS8_6sPO6e7zFN6DnRZmktHaL17DC1O9gVfrwpP_3oLCRbWm521enSBwJbPuxDmpLZmtlFno1VXdlM0RmSxq9AYcmoxaBnLTkNGlLBFaklG1LH-Xns4JB5yaxgFS9KR38Ov0ZPbtjLbVFqiOWLqkNpZFxA1jUgYms1LIILOuJlmBADyUsZFxkSSWqyQsVMKZUUURYaOZEFxnlr-HzaquzD4QkwrLAymENSJKjE0zpUMbRwXXXOAaPICgM3quWypyVxHjKu9JlL3tcrRd7m2XXw_ga__OnzURx5PSh92_zNtJ2eTcM90gRo0H8LnvRgO6HImsTL3yMgI3jYhjnpDBKIGwD3eWA_iw9pNeJZ45RnyGPUedU9wq8Li-B_8n_hG2Q-dX_lDhIWwuFyvzCV7qv8uyWQxhQ8yFb9MhbB2fjCdTfDoPf7hWTIZ-utwAcYMKeQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL78dCASPBiVo4cRInB4RWQNWq29UKLai31HZsFKkkZbMLan8Uv5Gx86hQxd564JKLncSxv_F8kxnPALwKkILK0EjKtOI0UoGiGTMFjQOeKh1LJn364q8TMZ2mh4fZbAN-92dhXFhlvyf6jbqotftH_pb7NCVIMOL3Jz-oqxrlvKt9CY0WFvvm9BeabM27vY-4vq_DcOfT_MMu7aoKUB2xdEltLIuIG8akDExmpZBBZl3trQKJZihjI-MiSSxXSViohDOjiiLCi2ZCcJ1Zjs-9AleRRoSpDxWcDV4L55P0XouI0zSJg-6Qjj-q54ybiKJGpM4Xx-nZ34rwAru94Jn1Cm_n9v82VXfgVketybiVhbuwYap7cL0ttnl6HxQqkpoedLEEBMk6mfdR9qS2ZL5SZqFXx3VTNttktqhRAnBiyLjLum4aMv4mS6TTZFwty--lT2GFL_xsGkfCUXoewJdL-cCHsFnVlXkMxKTC8kAKYY2IEmPTTOnQxlHBNReod0YQ9Mud6y79uqsCcpwPiaM9RHKESO4hkp-N4M1wz0mbfGRt760eDnm3ETX5ORZG8HJoxgl0fiFZmXrl-wg0lJG7remDmhGpLlrTI3jUInQYEs9cFQCGLds9ZM8H8O_xPlk_3hdwY3d-MMkne9P9p3AzdKLjIonEFmwuFyvzDK7pn8uyWTz3Qkjg6LKh_Ae0U25d
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o-FAkaCE7XqxEmcHBBaUVZULasVWlBvqe3YKFJJymYX1P40fh1j51Ghir31wCUXO4ljf-P5JjOeAXgVIAWVoZGUacVppAJFM2YKGgc8VTqWTPr0xV8PxHSaHh5msw343Z-FcWGV_Z7oN-qi1u4f-Q73aUqQYMQ7tguLmO1O3p38oK6ClPO09uU0Wojsm9NfaL41b_d2ca1fh-Hkw_z9R9pVGKA6YumS2lgWETeMSRmYzEohg8y6OlwFks5QxkbGRZJYrpKwUAlnRhVFhBfNhOA6sxyfewWuCpe03IcNzgYPhvNPeg9GxGmaxEF3YMcf23OGTkRRO1Lnl-P07G-leIHpXvDSeuU3uf0_T9sduNVRbjJuZeQubJjqHlxvi3Ce3geFCqamn7oYA4Iknsz76HtSWzJfKbPQq-O6KZttMlvUKBk4SWTcZWM3DRl_kyXSbDKuluX30qe2whd-No0j5yhVD-DLpXzgQ9is6so8BmJSYXkghbAGYWJsmikd2jgquOYC9dEIgn7pc92lZXfVQY7zIaG0h0uOcMk9XPKzEbwZ7jlpk5Ks7b3VQyPvNqgmP8fFCF4OzTiBzl8kK1OvfB-BBjRyujV9UGMiBUYrewSPWrQOQ-KZqw7AsGW7h-_5AP493ifrx_sCbiCC84O96f5TuBk6KfKxlVuwuVyszDO4pn8uy2bx3MsjgaPLRvIfeQp3Ew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nano-Medicine+for+Treatment+of+Tuberculosis%2C+Promising+Approaches+Against+Antimicrobial+Resistance&rft.jtitle=Current+microbiology&rft.au=Mobed%2C+Ahmad&rft.au=Alivirdiloo%2C+Vahid&rft.au=Gholami%2C+Sarah&rft.au=Moshari%2C+Amirreza&rft.date=2024-10-01&rft.pub=Springer+US&rft.issn=0343-8651&rft.eissn=1432-0991&rft.volume=81&rft.issue=10&rft_id=info:doi/10.1007%2Fs00284-024-03853-z&rft.externalDocID=10_1007_s00284_024_03853_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0343-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0343-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0343-8651&client=summon