Constructive Approximation to Multivariate Function by Decay RBF Neural Network

It is well known that single hidden layer feedforward networks with radial basis function (RBF) kernels are universal approximators when all the parameters of the networks are obtained through all kinds of algorithms. However, as observed in most neural network implementations, tuning all the parame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks Jg. 21; H. 9; S. 1517 - 1523
Hauptverfasser: Hou, Muzhou, Han, Xuli
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.09.2010
Institute of Electrical and Electronics Engineers
Schlagworte:
ISSN:1045-9227, 1941-0093, 1941-0093
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well known that single hidden layer feedforward networks with radial basis function (RBF) kernels are universal approximators when all the parameters of the networks are obtained through all kinds of algorithms. However, as observed in most neural network implementations, tuning all the parameters of the network may cause learning complicated, poor generalization, overtraining and unstable. Unlike conventional neural network theories, this brief gives a constructive proof for the fact that a decay RBF neural network with n + 1 hidden neurons can interpolate n + 1 multivariate samples with zero error. Then we prove that the given decay RBFs can uniformly approximate any continuous multivariate functions with arbitrary precision without training. The faster convergence and better generalization performance than conventional RBF algorithm, BP algorithm, extreme learning machine and support vector machines are shown by means of two numerical experiments.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1045-9227
1941-0093
1941-0093
DOI:10.1109/TNN.2010.2055888