A Hierarchical Optimization Method for Parameter Estimation of Diesel Generators
Diesel generators (DGs) are used to provide electrical power to consumers because their power outputs can be scheduled, and they offer stable operating characteristics in a standalone or microgrid system. The parameters for DGs are set to ensure reliable and accurate simulation for distributed energ...
Uložené v:
| Vydané v: | IEEE access Ročník 8; s. 176467 - 176479 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Diesel generators (DGs) are used to provide electrical power to consumers because their power outputs can be scheduled, and they offer stable operating characteristics in a standalone or microgrid system. The parameters for DGs are set to ensure reliable and accurate simulation for distributed energy resources (DERs), which increases system reliability, maintains power supply quality and reduces operational costs. There are many parameters that must be estimated for a DG. These parameter settings such as system gains and time constants may vary, as facilities are run for a few days. Parameters for a DG must then be re-estimated to ensure accurate simulation in a microgrid system. The proposed method uses a sensitivity analysis to classify parameters into three different categories. A hierarchical optimization method combined with an enhanced whale optimization algorithm (EWOA) is then used to estimate the parameter settings for a DG using actual measurement data. The proposed method is applied to a practical microgrid system, and the results show that the proposed method determines the optimal parameter settings for a DG that enables accurate simulation and robust implementation for a microgrid system. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2020.3026670 |