Using An Attention-Based LSTM Encoder-Decoder Network for Near Real-Time Disturbance Detection

Accurate prediction of future observations based on past data is the key to near real-time disturbance detection using satellite image time series (SITS). To overcome the limitations of existing methods, we present an attention-based long-short-term memory (LSTM) encoder-decoder model in which the h...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of selected topics in applied earth observations and remote sensing Ročník 13; s. 1819 - 1832
Hlavní autoři: Yuan, Yuan, Lin, Lei, Huo, Lian-Zhi, Kong, Yun-Long, Zhou, Zeng-Guang, Wu, Bin, Jia, Yan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1939-1404, 2151-1535
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate prediction of future observations based on past data is the key to near real-time disturbance detection using satellite image time series (SITS). To overcome the limitations of existing methods, we present an attention-based long-short-term memory (LSTM) encoder-decoder model in which the historical time series of a pixel is encoded with a bidirectional LSTM encoder while the future time series is produced by another LSTM decoder. An attention mechanism is integrated into the encoder-decoder model to align the input time series with the output time series and to dynamically choose the most relevant contextual information while forecasting. Based on the proposed model, we develop a framework for near real-time disturbance detection and verify its effectiveness in the case of burned area mapping. The prediction accuracy of the proposed model is evaluated using moderate resolution imaging spectroradiometer (MODIS) time series and compared with state-of-the-art models. Experimental results show that our model achieves the best results in terms of lower prediction error and higher model fitness. We also evaluate the disturbance detection ability of the proposed framework. The proposed approach improves the detection rate of disturbances while suppressing false alarms, and increases the temporal accuracy. We suggest that the proposed methods provide new tools for enhancing current early warning systems in real time.
AbstractList Accurate prediction of future observations based on past data is the key to near real-time disturbance detection using satellite image time series (SITS). To overcome the limitations of existing methods, we present an attention-based long-short-term memory (LSTM) encoder-decoder model in which the historical time series of a pixel is encoded with a bidirectional LSTM encoder while the future time series is produced by another LSTM decoder. An attention mechanism is integrated into the encoder-decoder model to align the input time series with the output time series and to dynamically choose the most relevant contextual information while forecasting. Based on the proposed model, we develop a framework for near real-time disturbance detection and verify its effectiveness in the case of burned area mapping. The prediction accuracy of the proposed model is evaluated using moderate resolution imaging spectroradiometer (MODIS) time series and compared with state-of-the-art models. Experimental results show that our model achieves the best results in terms of lower prediction error and higher model fitness. We also evaluate the disturbance detection ability of the proposed framework. The proposed approach improves the detection rate of disturbances while suppressing false alarms, and increases the temporal accuracy. We suggest that the proposed methods provide new tools for enhancing current early warning systems in real time.
Author Lin, Lei
Wu, Bin
Yuan, Yuan
Jia, Yan
Huo, Lian-Zhi
Kong, Yun-Long
Zhou, Zeng-Guang
Author_xml – sequence: 1
  givenname: Yuan
  orcidid: 0000-0003-1860-3275
  surname: Yuan
  fullname: Yuan, Yuan
  email: yuanyuan@njupt.edu.cn
  organization: School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 2
  givenname: Lei
  orcidid: 0000-0002-7012-4901
  surname: Lin
  fullname: Lin, Lei
  email: linlei1214@163.com
  organization: Beijing Qihoo Technology Co. Ltd., Beijing, China
– sequence: 3
  givenname: Lian-Zhi
  orcidid: 0000-0001-6705-6453
  surname: Huo
  fullname: Huo, Lian-Zhi
  email: huolz@aircas.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Yun-Long
  surname: Kong
  fullname: Kong, Yun-Long
  email: kongyl@aircas.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Zeng-Guang
  surname: Zhou
  fullname: Zhou, Zeng-Guang
  email: zhouzg@aircas.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 6
  givenname: Bin
  orcidid: 0000-0002-5597-6997
  surname: Wu
  fullname: Wu, Bin
  email: ihadl@sina.com
  organization: Aerospace DongFangHong Satellite Co. Ltd., Beijing, China
– sequence: 7
  givenname: Yan
  surname: Jia
  fullname: Jia, Yan
  email: jiayan@njupt.edu.cn
  organization: School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
BookMark eNqFkU1v1DAQhi1UJLYLv6CXSJyzePyRxMelH7RoAam7vWI5zrjyso2L7RXi39dpqh64cJrRaN5nPt5TcjKGEQk5A7oCoOrT1-1ufbtdMcroiqmu40y8IQsGEmqQXJ6QBSiuahBUvCOnKe0pbVir-IL8vEt-vK_WY7XOGcfsw1h_NgmHarPdfasuRxsGjPUFPsfqO-Y_If6qXJhyE6tbNId65x-wuvApH2NvRltyzGgn1nvy1plDwg8vcUnuri5359f15seXm_P1praCdrlGMEo6IQfoHZdW9GLglrPWSj6IvneupQ7AIiikrLFtOQxg6ACcKC1o-JLczNwhmL1-jP7BxL86GK-fCyHeaxOztwfUzEjomxYMNE1hi47RlhaYhcF13GFhfZxZjzH8PmLKeh-OcSzrayaobDmo8s0l4XOXjSGliO51KlA9maJnU_Rkin4xpajUPyrrs5k-laPxh_9oz2atR8TXaYq2rOEdfwILjpt6
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1109_TMECH_2024_3496533
crossref_primary_10_3390_buildings15142537
crossref_primary_10_1007_s00521_024_09707_w
crossref_primary_10_1109_JSTARS_2025_3603094
crossref_primary_10_1007_s11063_022_10749_1
crossref_primary_10_1109_TVT_2022_3152347
crossref_primary_10_1016_j_jag_2021_102651
crossref_primary_10_1002_widm_1528
crossref_primary_10_3390_rs16132387
crossref_primary_10_1016_j_autcon_2024_105819
crossref_primary_10_1109_JTEHM_2023_3276943
crossref_primary_10_1016_j_ecoinf_2022_101552
crossref_primary_10_3390_rs14215560
crossref_primary_10_1109_JSTARS_2021_3128522
crossref_primary_10_1016_j_jag_2025_104426
crossref_primary_10_1016_j_asoc_2021_107216
crossref_primary_10_1080_01431161_2024_2368930
crossref_primary_10_1016_j_tust_2025_106536
crossref_primary_10_1080_01431161_2025_2528256
crossref_primary_10_1088_1361_6501_ada78a
crossref_primary_10_1002_cjce_70101
crossref_primary_10_1109_TIE_2021_3076713
crossref_primary_10_1109_LGRS_2021_3100485
crossref_primary_10_1016_j_cherd_2024_11_003
crossref_primary_10_1016_j_engappai_2025_111346
crossref_primary_10_1038_s41598_022_25421_w
crossref_primary_10_1038_s41598_022_26534_y
Cites_doi 10.3390/rs9121330
10.1109/JSTARS.2012.2187177
10.1016/j.rse.2015.02.009
10.1109/78.650093
10.1016/j.rse.2015.05.005
10.1016/j.rse.2014.09.010
10.1109/TGRS.2016.2601622
10.1186/1475-2875-11-165
10.3390/rs10030471
10.1109/TGRS.2017.2783902
10.3390/rs11091104
10.3390/rs10030452
10.1109/TGRS.2005.847791
10.1016/j.rse.2012.02.022
10.5194/essd-10-2015-2018
10.3390/rs11141639
10.1109/TIP.2011.2176743
10.5194/isprs-archives-XLI-B7-987-2016
10.3390/rs71115318
10.1016/j.isprsjprs.2017.06.013
10.1007/s40808-018-0431-3
10.3115/v1/D14-1179
10.1016/j.rse.2015.03.011
10.1016/j.rse.2010.08.003
10.1016/j.rse.2014.01.011
10.1109/TNNLS.2016.2582924
10.1109/LGRS.2017.2728698
10.3390/ijgi7110420
10.1109/JSTARS.2010.2053918
10.1016/j.neunet.2014.09.003
10.1016/j.mcm.2009.10.031
10.1109/LGRS.2018.2794581
10.1109/ICASSP.2016.7472621
10.3390/f8080275
10.3390/rs11101257
10.1016/j.rse.2019.02.003
10.1016/j.cageo.2004.05.006
10.1109/JSTARS.2015.2428306
10.1109/ICCV.2015.515
10.18653/v1/K16-1028
10.1016/j.jag.2014.11.011
10.1016/j.eneco.2013.07.028
10.1016/j.rse.2010.07.008
10.1016/j.rse.2014.11.005
10.1016/j.neucom.2018.02.105
10.1109/Multi-Temp.2013.6866022
10.1016/j.rse.2015.02.012
10.1016/j.rse.2006.04.014
10.3390/rs10081217
10.1016/j.procs.2017.01.175
10.1145/3219819.3219845
10.1016/j.isprsjprs.2019.10.003
10.1016/j.jag.2011.06.007
10.18653/v1/D15-1166
10.1016/j.rse.2016.03.040
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2020.2988324
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 1832
ExternalDocumentID oai_doaj_org_article_2a51b671a1664bb4820701d8c1df83fe
10_1109_JSTARS_2020_2988324
9072638
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20170897; BK20180765
  funderid: 10.13039/501100004608
– fundername: NUPTSF
  grantid: NY217014
– fundername: Research Project of Surveying Mapping and Geoinformation of Jiangsu Province
  grantid: JSCHKY201905
– fundername: National Natural Science Foundation of China
  grantid: 41901356; 41971396; 41701512
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c408t-e1a95f45d1bf35c4b4d3c327c53d4bbff70f11ce19e026c715111d811f4c53ea3
IEDL.DBID RIE
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537282600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:42:40 EDT 2025
Fri Jul 25 10:35:39 EDT 2025
Tue Nov 18 22:23:38 EST 2025
Sat Nov 29 04:51:04 EST 2025
Wed Aug 27 02:50:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-e1a95f45d1bf35c4b4d3c327c53d4bbff70f11ce19e026c715111d811f4c53ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6705-6453
0000-0002-7012-4901
0000-0003-1860-3275
0000-0002-5597-6997
OpenAccessLink https://ieeexplore.ieee.org/document/9072638
PQID 2405731919
PQPubID 75722
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_JSTARS_2020_2988324
ieee_primary_9072638
proquest_journals_2405731919
crossref_primary_10_1109_JSTARS_2020_2988324
doaj_primary_oai_doaj_org_article_2a51b671a1664bb4820701d8c1df83fe
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref15
ref58
ref14
kingma (ref59) 2014
ref55
ref11
adhikari (ref24) 2013
ref10
ref17
ref16
ref18
ref51
cui (ref54) 2018
ref46
chalapathy (ref37) 2019
ref45
ref48
ref42
ref41
ref44
liu (ref50) 2017; 9
ref49
ref8
ref7
ref9
yu (ref57) 2012; 21
ref4
ref3
ref6
ref5
ref40
kvalseth (ref65) 1985; 39
ref35
ref34
ashish (ref53) 2017
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
v (ref19) 2011
ref23
ref26
ref25
ref64
ref20
ref63
ref22
ref21
ref28
ref27
ref29
bahdanau (ref47) 2014
sutskever (ref43) 2014
ref60
ref62
ref61
graves (ref52) 2014
References_xml – volume: 9
  year: 2017
  ident: ref50
  article-title: Bidirectional-convolutional LSTM based spectral-spatial feature learning for hyperspectral image classification
  publication-title: Remote Sens
  doi: 10.3390/rs9121330
– ident: ref6
  doi: 10.1109/JSTARS.2012.2187177
– ident: ref60
  doi: 10.1016/j.rse.2015.02.009
– ident: ref48
  doi: 10.1109/78.650093
– ident: ref12
  doi: 10.1016/j.rse.2015.05.005
– ident: ref14
  doi: 10.1016/j.rse.2014.09.010
– year: 2013
  ident: ref24
  article-title: An introductory study on time series modeling and forecasting
– ident: ref27
  doi: 10.1109/TGRS.2016.2601622
– ident: ref20
  doi: 10.1186/1475-2875-11-165
– ident: ref33
  doi: 10.3390/rs10030471
– ident: ref28
  doi: 10.1109/TGRS.2017.2783902
– volume: 39
  start-page: 279
  year: 1985
  ident: ref65
  article-title: Cautionary note about R2
  publication-title: Amer Statistician
– ident: ref9
  doi: 10.3390/rs11091104
– ident: ref39
  doi: 10.3390/rs10030452
– year: 2014
  ident: ref52
  article-title: Neural turing machines
– start-page: 95
  year: 2011
  ident: ref19
  article-title: A Gaussian process based online change detection algorithm for monitoring periodic time series
  publication-title: Proc SIAM Int Conf Data Mining
– ident: ref3
  doi: 10.1109/TGRS.2005.847791
– ident: ref1
  doi: 10.1016/j.rse.2012.02.022
– ident: ref56
  doi: 10.5194/essd-10-2015-2018
– ident: ref49
  doi: 10.3390/rs11141639
– volume: 21
  start-page: 2481
  year: 2012
  ident: ref57
  article-title: Solving inverse problems with piecewise linear estimators: From Gaussian mixture models to structured sparsity
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2011.2176743
– ident: ref25
  doi: 10.5194/isprs-archives-XLI-B7-987-2016
– ident: ref21
  doi: 10.3390/rs71115318
– ident: ref10
  doi: 10.1016/j.isprsjprs.2017.06.013
– ident: ref40
  doi: 10.1007/s40808-018-0431-3
– ident: ref42
  doi: 10.3115/v1/D14-1179
– ident: ref58
  doi: 10.1016/j.rse.2015.03.011
– ident: ref13
  doi: 10.1016/j.rse.2010.08.003
– ident: ref16
  doi: 10.1016/j.rse.2014.01.011
– start-page: 3104
  year: 2014
  ident: ref43
  article-title: Sequence to sequence learning with neural networks
  publication-title: Proc Neural Inf Process Syst
– ident: ref34
  doi: 10.1109/TNNLS.2016.2582924
– ident: ref30
  doi: 10.1109/LGRS.2017.2728698
– ident: ref38
  doi: 10.3390/ijgi7110420
– ident: ref5
  doi: 10.1109/JSTARS.2010.2053918
– ident: ref36
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref18
  doi: 10.1016/j.mcm.2009.10.031
– year: 2014
  ident: ref47
  article-title: Neural machine translation by jointly learning to align and translate
– ident: ref32
  doi: 10.1109/LGRS.2018.2794581
– ident: ref45
  doi: 10.1109/ICASSP.2016.7472621
– ident: ref63
  doi: 10.3390/f8080275
– ident: ref22
  doi: 10.3390/rs11101257
– ident: ref64
  doi: 10.1016/j.rse.2019.02.003
– ident: ref4
  doi: 10.1016/j.cageo.2004.05.006
– ident: ref2
  doi: 10.1109/JSTARS.2015.2428306
– ident: ref46
  doi: 10.1109/ICCV.2015.515
– ident: ref44
  doi: 10.18653/v1/K16-1028
– ident: ref55
  doi: 10.1016/j.jag.2014.11.011
– ident: ref41
  doi: 10.1016/j.eneco.2013.07.028
– ident: ref11
  doi: 10.1016/j.rse.2010.07.008
– ident: ref15
  doi: 10.1016/j.rse.2014.11.005
– ident: ref29
  doi: 10.1016/j.neucom.2018.02.105
– year: 2019
  ident: ref37
  article-title: Deep learning for anomaly detection: A survey
– ident: ref61
  doi: 10.1109/Multi-Temp.2013.6866022
– year: 2018
  ident: ref54
  article-title: Stacked bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction
– ident: ref62
  doi: 10.1016/j.rse.2015.02.012
– ident: ref26
  doi: 10.1016/j.rse.2006.04.014
– ident: ref31
  doi: 10.3390/rs10081217
– ident: ref23
  doi: 10.1016/j.procs.2017.01.175
– ident: ref35
  doi: 10.1145/3219819.3219845
– ident: ref8
  doi: 10.1016/j.isprsjprs.2019.10.003
– ident: ref7
  doi: 10.1016/j.jag.2011.06.007
– ident: ref51
  doi: 10.18653/v1/D15-1166
– ident: ref17
  doi: 10.1016/j.rse.2016.03.040
– year: 2014
  ident: ref59
  article-title: Adam: A method for stochastic optimization
– start-page: 6000
  year: 2017
  ident: ref53
  article-title: Attention is all you need
  publication-title: Proc Adv Neural Inf Process Syst
SSID ssj0062793
Score 2.4301362
Snippet Accurate prediction of future observations based on past data is the key to near real-time disturbance detection using satellite image time series (SITS). To...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1819
SubjectTerms Accuracy
Attention mechanism
Coders
Detection
Early warning systems
encoder–decoder
False alarms
Forecasting
Hidden Markov models
Image detection
Long short-term memory
long-short-term memory (LSTM)
Mapping
Methods
Model accuracy
near real-time disturbance detection
Predictions
Predictive models
Real time
Real-time systems
Remote sensing
satellite image time series (SITS)
Satellite imagery
Satellites
Spaceborne remote sensing
Spectroradiometers
Time series
Time series analysis
Warning systems
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhNNBLyaOhm0fRoce4K8myZR032d300C4hD9hThJ5QKE5wnED-fUaSd2koNJecbIxsy998noc9mkHomzCOhLg4xtV1bGGmbaEdcJlby0OQ1Plap2YTYrFolkt58Verr5gTlssDZ-DGTFfU1IJqWtfcGA4WSxDqGktdaMrgo_YlQq6CqayDawa0G2oMUSLHQPLJ5RVEg4x8Z7IBFvNXdiiV6x_6q_yjlJOlmW-jT4OLiCd5ajtow7e7aOs8teB93kO36S8_nrR40vc5WbE4BVvk8M-r61941sZV6l0x9WmLFznPG4NzCvu6w5fgGhZx5QeegogfOxPljqe-T0lZ7Wd0M59dn_0ohi4JheWk6QtPtawCrxw1oawsN9yVtmTCVqUDwEIQJFBqPZUe4i0rwMRTwI_SwGGI1-U-2mzvWv8FYU8MmHfiWWM516XUxFvwGGojwU3whI8QW2Gm7FBCPHay-KNSKEGkykCrCLQagB6hk_VJ97mCxv-Hn0ZhrIfG8tfpAJBCDaRQb5FihPaiKNcXkUQwUDQjdLQSrRpe1QfFossKbKXy4D1ufYg-xsfJX2mO0GbfPfpj9ME-9b8fuq-JpS9sxed6
  priority: 102
  providerName: Directory of Open Access Journals
Title Using An Attention-Based LSTM Encoder-Decoder Network for Near Real-Time Disturbance Detection
URI https://ieeexplore.ieee.org/document/9072638
https://www.proquest.com/docview/2405731919
https://doaj.org/article/2a51b671a1664bb4820701d8c1df83fe
Volume 13
WOSCitedRecordID wos000537282600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZJaKGXvtLSTdKgQ49xIsmyZR032aQ9tEtJUsipQo8RFIpTHG8h_z4jWbtQGgo9WRjJSJ5P0jfSPAj5oFxgMTnHhLZNKcysr2xALEvvZYyaB2htTjahlsvu5kZ_3SJHG18YAMjGZ3CcivkuP9z6VToqO0FFTiBetsm2Uu3kq7VedVuhcoBd5CO6SiFjSoQhzvQJQnx-eYW6oGDHQneIYfnHLpSD9ZfsKn8tyXmfuXjxfz18SZ4XPknnEwBekS3oX5OnH3O-3vtd8j2bBNB5T-fjOFk2Vqe4cQX6-er6Cz3vk0v7UC0gP-lyMgqnyGSxbAd6iTyySm4idIF4WA0ugYQuYMwWXP0b8u3i_PrsU1VSKlResm6sgFvdRNkE7mLdeOlkqH0tlG_qIJ2LUbHIuQeuAZUzr5APcB46zqPEKmDrt2Snv-3hHaHAHHIBBqLzUtpaWwYe6UXrNHIKYHJGxPoXG1_ijae0Fz9N1juYNpNcTJKLKXKZkaNNo19TuI1_Vz9NsttUTbGy8wsUiilTzwjbcNcqbnnb4hglch7FcFCeh9jVEWZkNwly85Eiwxk5WCPBlHl9Z0Titwhtrvceb7VPnqUOToc0B2RnHFbwnjzxv8cfd8Nh1vgPM3AfADCO58k
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7UquiLtyquVs2Dj502mclc8rjttlbcLtKu0CdDLicgyFSms4L_3pPM7IJYCn2aMCRDMudL8p3kXAA-1tbzEJ1jfFXFFGbGZcYTlqVzMgQlPFYmJZuoF4vm8lJ93YK9jS8MIibjM9yPxXSX76_cKh6VHZAilxNe7sH9mDmrHLy11utuldcpxC4xEpXFoDFjjCHB1QGBfHp-Qdpgzvdz1RCK5T_7UArXP-ZX-W9RTjvNydO79fEZPBkZJZsOEHgOW9i-gIefUsbePzvwPRkFsGnLpn0_2DZmh7R1eTa_WJ6x4zY6tXfZDNOTLQazcEZclsqmY-fEJLPoKMJmhIhVZyNM2Az7ZMPVvoRvJ8fLo9NsTKqQOcmbPkNhVBlk6YUNRemklb5wRV67svDS2hBqHoRwKBSSeuZqYgRC-EaIIKkKmuIVbLdXLb4GhtwSG-CYN05KUyjD0RHBqKwiVoFcTiBf_2LtxojjMfHFT500D670IBcd5aJHuUxgb9Po1xBw4_bqh1F2m6oxWnZ6QULR4-TTuSmFrWphRFXRGCWxnprToJzwoSkCTmAnCnLzkVGGE9hdI0GPM_ta55HhEriFenNzqw_w6HR5Ntfzz4svb-Fx7OxwZLML2323wnfwwP3uf1x37xN8_wL5t-of
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+An+Attention-Based+LSTM+Encoder-Decoder+Network+for+Near+Real-Time+Disturbance+Detection&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Yuan%2C+Yuan&rft.au=Lin%2C+Lei&rft.au=Huo%2C+Lian-Zhi&rft.au=Kong%2C+Yun-Long&rft.date=2020&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=13&rft.spage=1819&rft.epage=1832&rft_id=info:doi/10.1109%2FJSTARS.2020.2988324&rft.externalDocID=9072638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon