Fault Location of Strip Steel Surface Quality Defects on Hot-Rolling Production Line Based on Information Fusion of Historical Cases and Process Data
Surface quality is the most important index to improve the overall quality of strip steel. In order to implement the fault location on the hot-rolling line with surface defects of strip steel, a fault tracing model based on information fusion of historical production cases and process data is propos...
Saved in:
| Published in: | IEEE access Vol. 8; pp. 171240 - 171251 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Surface quality is the most important index to improve the overall quality of strip steel. In order to implement the fault location on the hot-rolling line with surface defects of strip steel, a fault tracing model based on information fusion of historical production cases and process data is proposed. For historical cases, the model determines the defect cause labels through text similarity calculation, and fuzzy semantic inference is used to obtain the probability distribution of defect causes on this basis; for the process data, the model uses L1 regularization method for feature selection, and XGBoost integration method is used to train the correlation model between process data and defects to determine the contribution of each feature in the data source. Finally, based on the D-S evidence theory, different rules are set to merge the two judgments to determine the probability of each source of failure on the hot-rolling production line. The model is applied to the real production environment of iron and steel enterprises, and it is verified that the proposed method can effectively assist experts in decision-making, which greatly improves the efficiency of tracing the source of faults on the hot-rolling production line. |
|---|---|
| AbstractList | Surface quality is the most important index to improve the overall quality of strip steel. In order to implement the fault location on the hot-rolling line with surface defects of strip steel, a fault tracing model based on information fusion of historical production cases and process data is proposed. For historical cases, the model determines the defect cause labels through text similarity calculation, and fuzzy semantic inference is used to obtain the probability distribution of defect causes on this basis; for the process data, the model uses L1 regularization method for feature selection, and XGBoost integration method is used to train the correlation model between process data and defects to determine the contribution of each feature in the data source. Finally, based on the D-S evidence theory, different rules are set to merge the two judgments to determine the probability of each source of failure on the hot-rolling production line. The model is applied to the real production environment of iron and steel enterprises, and it is verified that the proposed method can effectively assist experts in decision-making, which greatly improves the efficiency of tracing the source of faults on the hot-rolling production line. |
| Author | Wang, Jian Wang, Zhaoping Chen, Sen |
| Author_xml | – sequence: 1 givenname: Zhaoping orcidid: 0000-0002-2251-733X surname: Wang fullname: Wang, Zhaoping email: 1193671148@qq.com organization: Computer Integrated Manufacturing System Research Center, College of Electronics and Information Engineering, Tongji University, Shanghai, China – sequence: 2 givenname: Jian surname: Wang fullname: Wang, Jian organization: Computer Integrated Manufacturing System Research Center, College of Electronics and Information Engineering, Tongji University, Shanghai, China – sequence: 3 givenname: Sen orcidid: 0000-0002-1256-3105 surname: Chen fullname: Chen, Sen organization: Computer Integrated Manufacturing System Research Center, College of Electronics and Information Engineering, Tongji University, Shanghai, China |
| BookMark | eNqFkc1uGyEUhUdVKjVN8wTZIHU9Lj8DMyzTSVxbspS2btcIwyXCmgwuMIs8SN632GNFVTdhAVdX53z3ivOxuhjDCFV1Q_CCECy_3Pb9_Xa7oJjiBcO04R19V11SImTNOBMX_9QfquuU9ricrrR4e1m9LPU0ZLQJRmcfRhQc2uboD-UGGNB2ik4bQD8mPfj8jO7AgckJFeUq5PpnGAY_PqLvMdjJnAAbPwL6qhPYo2g9uhCfZvRySucJK59yiN7oAfVFmZAe7ZFhICV0p7P-VL13ekhwfX6vqt_L-1_9qt48fFv3t5vaNLjLtWWWNFZasmsIZYApdyCYBmY7Q8WulY0o--KWOCa1FjtoBZOd0JITTp0V7Kpaz1wb9F4don_S8VkF7dWpEeKj0jF7M4BqhDWWOcMF5Q1roJMcJHPCwo46YVxhfZ5Zhxj-TJCy2ocpjmV9VTJpRNsRiYuKzSoTQ0oR3OtUgtUxTjXHqY5xqnOcxSX_cxmfT7-ao_bDG96b2esB4HWapBgzTtlfXhWwlA |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_compeleceng_2024_110033 crossref_primary_10_3390_a16110516 crossref_primary_10_1016_j_engappai_2025_111150 crossref_primary_10_1109_TIM_2025_3548193 |
| Cites_doi | 10.3233/IFS-152034 10.1016/j.microrel.2017.03.015 10.1109/TIE.2014.2327555 10.1109/TIE.2012.2219838 10.1109/TII.2012.2214394 10.1007/s11036-017-0874-1 10.1016/0022-247X(67)90189-8 10.1016/j.cie.2018.03.028 10.1109/TII.2016.2637169 10.1016/S0020-0255(71)80005-1 10.1007/BF00116251 10.1049/joe.2017.0190 10.1109/ACCESS.2018.2857506 10.1049/iet-cta.2014.0732 10.3233/AIS-170432 10.1016/0020-0255(87)90007-7 10.1109/TIE.2016.2520906 10.1080/00207543.2018.1449978 10.1109/TII.2019.2894111 10.1016/j.measurement.2006.10.010 10.1049/iet-cta.2013.0691 10.1145/3299819.3299824 10.1145/2939672.2939785 10.1177/0954406213492273 10.1109/TIE.2015.2509913 10.1109/TIE.2019.2901565 10.1016/j.cie.2017.01.028 10.1109/ACCESS.2020.2974535 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2020.3024582 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 171251 |
| ExternalDocumentID | oai_doaj_org_article_46dcd3fc5625434e895e93f6deb2f6cf 10_1109_ACCESS_2020_3024582 9200352 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science and Technology Innovation 2030 of China Next-Generation Artificial Intelligence Major Project, Data-Driven Tripartite Collaborative Decision-Making and Optimization grantid: 2018AAA0101801 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-d3d14d9d1b4123e025fe63ae3d8c26b7946efe071f39aa6be763986a95152fd63 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000573787300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:49:23 EDT 2025 Mon Jun 30 04:32:16 EDT 2025 Tue Nov 18 22:11:50 EST 2025 Sat Nov 29 04:14:13 EST 2025 Wed Aug 27 02:31:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-d3d14d9d1b4123e025fe63ae3d8c26b7946efe071f39aa6be763986a95152fd63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1256-3105 0000-0002-2251-733X |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9200352 |
| PQID | 2454678190 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_46dcd3fc5625434e895e93f6deb2f6cf crossref_citationtrail_10_1109_ACCESS_2020_3024582 ieee_primary_9200352 crossref_primary_10_1109_ACCESS_2020_3024582 proquest_journals_2454678190 |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 wang (ref21) 2015; 38 ref24 ref26 ref25 ref20 ref22 fayyad (ref23) 1996; 17 ref28 ref27 qin (ref6) 2014; 31 ref29 ref8 ref7 ref9 ref4 ref3 ref5 |
| References_xml | – ident: ref27 doi: 10.3233/IFS-152034 – ident: ref28 doi: 10.1016/j.microrel.2017.03.015 – ident: ref10 doi: 10.1109/TIE.2014.2327555 – volume: 38 start-page: 24 year: 2015 ident: ref21 article-title: Application of EEMD-based resonance demodulation technology in train bearing fault diagnosis publication-title: Modern Electronic Technology – ident: ref11 doi: 10.1109/TIE.2012.2219838 – ident: ref16 doi: 10.1109/TII.2012.2214394 – ident: ref5 doi: 10.1007/s11036-017-0874-1 – ident: ref24 doi: 10.1016/0022-247X(67)90189-8 – ident: ref2 doi: 10.1016/j.cie.2018.03.028 – ident: ref9 doi: 10.1109/TII.2016.2637169 – ident: ref25 doi: 10.1016/S0020-0255(71)80005-1 – ident: ref29 doi: 10.1007/BF00116251 – ident: ref20 doi: 10.1049/joe.2017.0190 – volume: 17 start-page: 37 year: 1996 ident: ref23 article-title: From data mining to knowledge discovery in databases publication-title: AI Mag – ident: ref15 doi: 10.1109/ACCESS.2018.2857506 – ident: ref18 doi: 10.1049/iet-cta.2014.0732 – ident: ref1 doi: 10.3233/AIS-170432 – ident: ref31 doi: 10.1016/0020-0255(87)90007-7 – ident: ref22 doi: 10.1109/TIE.2016.2520906 – ident: ref3 doi: 10.1080/00207543.2018.1449978 – ident: ref4 doi: 10.1109/TII.2019.2894111 – ident: ref8 doi: 10.1016/j.measurement.2006.10.010 – ident: ref17 doi: 10.1049/iet-cta.2013.0691 – ident: ref13 doi: 10.1145/3299819.3299824 – ident: ref30 doi: 10.1145/2939672.2939785 – ident: ref26 doi: 10.1177/0954406213492273 – ident: ref12 doi: 10.1109/TIE.2015.2509913 – ident: ref19 doi: 10.1109/TIE.2019.2901565 – ident: ref7 doi: 10.1016/j.cie.2017.01.028 – volume: 31 start-page: 1245 year: 2014 ident: ref6 article-title: Ensemble empirical mode decomposition and fuzzy entropy in fault feature analysis for high-speed train bogie publication-title: Control Theory Appl – ident: ref14 doi: 10.1109/ACCESS.2020.2974535 |
| SSID | ssj0000816957 |
| Score | 2.2274275 |
| Snippet | Surface quality is the most important index to improve the overall quality of strip steel. In order to implement the fault location on the hot-rolling line... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 171240 |
| SubjectTerms | Data integration Data processing Decision making Fault location Feature extraction feature importance feature selection fuzzy semantic inference Hot rolling information fusion Iron and steel industry process data analysis Regularization Regularization methods Steel Strip steel Strips Surface defects Surface properties Surface treatment Tracing |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYh5NAeSh4t3bzQoceaWJZWlo67myx7CEsgDeQmZI0EgWW37NqB_JD-344sZbulkF5y8cEeW5JnPPONLH1DyDcnoOGlhSJwUReiaaBQrmYFC5ZzyxgMVSo2Uc_n6vFR3-2U-oprwhI9cHpxV0KCAx5cBOqCC6_00GseJGBKGKQL0fsi6tlJpnofrJjUwzrTDLFSX40mExwRJoQV5qnxf6Oq_gpFPWN_LrHyj1_ug830kHzKKJGOUu-OyJ5fHpOPO9yBJ-TX1HaLlt6u0pwbXQV636IHwKP3C3rfrYN1niaOjBd67ft1GxQlZ6u2yFzc9C4RvsYHYFbq6RiDGkShvE2pvzLtNrmFP6QidIKSG2qXQPNeA3ptW_uZPExvfkxmRa6xUDhRqrYADkyABtYIjGEeEVDwklvPQblKNpF-HvuHOCRwba1sPPojraRFYDasAkj-hewvV0v_lVDnVNCI5qKyRCihqUAyV5elL12kARuQ6vV1G5cJyGMdjIXpE5FSm6QjE3Vkso4G5Pv2pp-Jf-Nt8XHU41Y0kmf3J9CkTDYp8z-TGpCTaAXbh-jEGjsg569WYfKHvjHYKoaaCKtO36PpM_IhDifN8ZyT_Xbd-Qty4J7bp836srfx30f9_5M priority: 102 providerName: Directory of Open Access Journals |
| Title | Fault Location of Strip Steel Surface Quality Defects on Hot-Rolling Production Line Based on Information Fusion of Historical Cases and Process Data |
| URI | https://ieeexplore.ieee.org/document/9200352 https://www.proquest.com/docview/2454678190 https://doaj.org/article/46dcd3fc5625434e895e93f6deb2f6cf |
| Volume | 8 |
| WOSCitedRecordID | wos000573787300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZJ6KE9pI-0dJM06NBj3NiWLEvHZJMlhzYE0kJuQpZGUFjWZdcu9JJ_0f_b0SNuSkqhF2HskTVmZM1Dmm8IeW-561hpXOEZbwveda6Qtq2KyhvGTFW5RqZiE-3Vlby9Vddb5HjKhQGAePgMPoTLuJfvejuGUNmJSvCd22S7bduUqzXFU0IBCdW0GVioKtXJ6XyO34AuYI2eadhhlPUfyidi9OeiKo9W4qheFs__j7EXZDebkfQ0yf0l2YLVK_LsAbjgHvm5MONyoB_7FJSjvac3Ay4R2AIs6c249sYCTSAaP-g5xIMdFCkv-6HIYN30OiHChheg2wr0DLWeC0Q5jyk-WYybPMJv1BE6R8oNNStHczICPTeDeU2-LC4-zy-LXIShsLyUQ-GYq7hTruo4KjlAE8mDYAaYk7YWXcCnR_7QUPFMGSM6wAVLSWHQcmtq7wR7Q3ZW_QreEmqt9ArNPeZtw33putqJyrZlCaUNOGEzUt9LR9uMUB4KZSx19FRKpZNIdRCpziKdkeOp07cE0PFv8rMg9ok0oGvHGyhPnX9WzYWzLnApAlQAB6kaUMwLB13thfUzshfmwPSSLP4ZObyfRDqvBBuNo6IuCnbX_t97HZCngcEU1jkkO8N6hHfkif0-fN2sj2KMANtPdxdHccL_ApCf_bE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OU1Af_DrF1VPz4OPVa5s0bR7v9lxWXJeDO-HeQppM4GDZym4r-If4_zppcquiCL6U0k6SKZNmPpL5DcBbK1zLc-Myz0WdibZ1WWPrIiu84dwUhauaWGyiXi6bqyt1vgdHu1wYRBwPn-G7cDvu5bvODiFUdqwifOctuF0JURYxW2sXUQklJFRVJ2ihIlfHJ9MpfQU5gSX5pmGPsSl_Uz8jSn8qq_LHWjwqmNnD_2PtETxIhiQ7iZJ_DHu4fgL3f4EXPIDvMzOserboYliOdZ5d9LRI0BVxxS6GjTcWWYTR-MbOcDzawYhy3vVZgutm5xETNnRAjiuyU9J7LhClTKbxzWzYphF-4o6wKVFumVk7ltIR2JnpzVP4PHt_OZ1nqQxDZkXe9JnjrhBOuaIVpOaQjCSPkhvkrrGlbANCPfFHpornyhjZIi1ZqpGGbLeq9E7yZ7C_7tb4HJi1jVdk8HFvK-Fz15ZOFrbOc8xtQAqbQHkjHW0TRnkolbHSo6-SKx1FqoNIdRLpBI52jb5EiI5_k58Gse9IA772-IDkqdPvqoV01gUuZQALENioChX30mFbemn9BA7CHNh1ksQ_gcObSaTTWrDVNCppo2B5vfh7qzdwd375aaEXH5YfX8K9wGwM8hzCfr8Z8BXcsV_76-3m9TjhfwDtCP7S |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Location+of+Strip+Steel+Surface+Quality+Defects+on+Hot-Rolling+Production+Line+Based+on+Information+Fusion+of+Historical+Cases+and+Process+Data&rft.jtitle=IEEE+access&rft.au=Wang%2C+Zhaoping&rft.au=Wang%2C+Jian&rft.au=Chen%2C+Sen&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=171240&rft.epage=171251&rft_id=info:doi/10.1109%2FACCESS.2020.3024582&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3024582 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |