A Study on Position Control of a Continuum Arm Using MAML (Model-Agnostic Meta-Learning) for Adapting Different Loading Conditions

Predicting tip positions of a spring based continuum manipulator is highly challenging due to its nonlinear deformations. External loading on the tip further deteriorates the accuracy. Model-less control strategies have shown great success in the tip positioning. However, they require a large amount...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 10; pp. 14980 - 14992
Main Authors: Sahoo, Alok Ranjan, Chakraborty, Pavan
Format: Journal Article
Language:English
Published: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Predicting tip positions of a spring based continuum manipulator is highly challenging due to its nonlinear deformations. External loading on the tip further deteriorates the accuracy. Model-less control strategies have shown great success in the tip positioning. However, they require a large amount of data and time for the training. Performances of these controllers also deteriorate with external loads. To address these problems, this paper presents a MAML(Model-Agnostic Meta-Learning) based closed loop controller for the continuum manipulators. This controller requires a relatively small amount of data to achieve the state-of-art positioning accuracy. It can also adapt to changes due to the external loads with less than 2.5 percent of the original data. Two algorithms for the offline adaptation of the known and unknown external loading are proposed here. These techniques are also helpful for automatic stiffness tuning of the spring based continuum manipulators. The experimental validations have been done both in the simulation environment and on the real prototype. The continuum arm used for the experimentation is a tendon based non constant curvature spring-based manipulator. The average relative positioning error for the zero loading case was found to be 3.83% on the spring based prototype. The controller was successful in bringing down the relative tip positioning error of the manipulator from 5.42% to 2.7% in the simulation environment. It also showed success in bringing down the relative tip positioning error from 7.8% to 3.96% on the real prototype. Average relative tip positioning errors below 4.27% and 4.89% have been achieved in the trajectory following tasks for the known and unknown external loading cases respectively.
AbstractList Predicting tip positions of a spring based continuum manipulator is highly challenging due to its nonlinear deformations. External loading on the tip further deteriorates the accuracy. Model-less control strategies have shown great success in the tip positioning. However, they require a large amount of data and time for the training. Performances of these controllers also deteriorate with external loads. To address these problems, this paper presents a MAML(Model-Agnostic Meta-Learning) based closed loop controller for the continuum manipulators. This controller requires a relatively small amount of data to achieve the state-of-art positioning accuracy. It can also adapt to changes due to the external loads with less than 2.5 percent of the original data. Two algorithms for the offline adaptation of the known and unknown external loading are proposed here. These techniques are also helpful for automatic stiffness tuning of the spring based continuum manipulators. The experimental validations have been done both in the simulation environment and on the real prototype. The continuum arm used for the experimentation is a tendon based non constant curvature spring-based manipulator. The average relative positioning error for the zero loading case was found to be 3.83% on the spring based prototype. The controller was successful in bringing down the relative tip positioning error of the manipulator from 5.42% to 2.7% in the simulation environment. It also showed success in bringing down the relative tip positioning error from 7.8% to 3.96% on the real prototype. Average relative tip positioning errors below 4.27% and 4.89% have been achieved in the trajectory following tasks for the known and unknown external loading cases respectively.
Author Chakraborty, Pavan
Sahoo, Alok Ranjan
Author_xml – sequence: 1
  givenname: Alok Ranjan
  orcidid: 0000-0002-3952-3701
  surname: Sahoo
  fullname: Sahoo, Alok Ranjan
  email: rsi2017503@iiita.ac.in
  organization: Robotics and Machine Intelligence Laboratory, Department of Information Technology, IIIT Allahabad, Allahabad, India
– sequence: 2
  givenname: Pavan
  surname: Chakraborty
  fullname: Chakraborty, Pavan
  organization: Robotics and Machine Intelligence Laboratory, Department of Information Technology, IIIT Allahabad, Allahabad, India
BookMark eNp9UcFu3CAUtKJUaprmC3JByqU9eIuNMfhouWkbyatU2uaMsHmsWHlhC_iQa7-8eJ1WVQ9BQjweM8M8zbvs0joLWXZb4E1R4OZT23X3u92mxGW5IUXFWMMusquyqJucUFJf_lO_zW5COOC0eGpRdpX9atEuzuoZOYu-u2CiSUXnbPRuQk4jeb4YO89H1PojegrG7tG23fbow9YpmPJ2b12IZkRbiDLvQXqbIB-Rdh61Sp7iQvhstAYPNqLeSbV0kqw6_xbeZ2-0nALcvJzX2dOX-x_dt7x__PrQtX0-VpjHfGQKM8xxlawPJaGYlBoTQkANFFR60BXnUpKiphgIg3FQZGSMDgQDr_RIrrOHVVc5eRAnb47SPwsnjTg3nN8L6dMgEwgm64FpCpIAVGxoZEkxayQemS4qTlnSulu1Tt79nCFEcXCzt8m-KOuS8YqmnVDNihq9C8GDFqOJchk6emkmUWCxJCjWBMWSoHhJMHHJf9w_jl9n3a4sAwB_GU3dcMxq8htTU6gk
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_TRO_2023_3275375
crossref_primary_10_3390_mi15030313
crossref_primary_10_1016_j_energy_2024_131649
crossref_primary_10_1145_3659943
Cites_doi 10.1109/LRA.2018.2797241
10.1016/j.mechmachtheory.2020.104062
10.1089/soro.2015.0006
10.1109/LRA.2021.3061311
10.1080/01691864.2018.1554507
10.1089/soro.2017.0079
10.1109/ICRA.2019.8793653
10.1109/ROBOSOFT.2018.8404928
10.3390/app10228031
10.1109/TPAMI.2021.3079209
10.1002/adma.201203002
10.1109/TRO.2009.2022426
10.1109/ROBOSOFT.2019.8722721
10.1080/01691864.2015.1036772
10.1109/IROS.2018.8594451
10.1016/j.mechmachtheory.2021.104429
10.1109/DEVLRN.2011.6037368
10.1007/978-3-319-33714-2_6
10.1088/1748-3190/aa839f
10.1109/IROS.2017.8206123
10.1038/nature14543
10.1109/TRO.2018.2878318
10.1109/ICRA.2019.8794238
10.1016/j.sna.2011.03.008
10.1109/TRO.2014.2314777
10.1089/soro.2017.0111
10.1016/j.mechmachtheory.2016.06.010
10.1109/TMECH.2016.2613410
10.1109/TRO.2008.2002311
10.1109/ICRA.2015.7139904
10.1108/ir-04-2021-0070
10.1109/TMECH.2021.3055339
10.15607/RSS.2019.XV.076
10.1109/TRO.2015.2428511
10.1109/LRA.2021.3061379
10.1016/j.rcim.2016.09.004
10.1109/TRO.2018.2868815
10.1088/1748-3190/10/3/035002
10.1002/rob.10070
10.1016/j.mechmachtheory.2020.104221
10.1109/LRA.2021.3086413
10.3390/app9061142
10.1109/IROS.2011.6094477
10.1007/s12369-021-00761-1
10.1089/soro.2016.0051
10.1177/0278364910368147
10.1016/j.arcontrol.2017.09.006
10.1177/0278364919842269
10.1163/156855306777361631
10.1109/RoboSoft48309.2020.9116003
10.1109/IROS.2012.6385596
10.1089/soro.2018.0047
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3147797
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 14992
ExternalDocumentID oai_doaj_org_article_7a6b7f5ea3ee47b9a25079a0c7f14857
10_1109_ACCESS_2022_3147797
9698076
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-c7d070804816b235032f0333edb5ed080f488aa31650e37ecbd3c775b30e84fc3
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000754230500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:04 EDT 2025
Mon Jun 30 05:13:59 EDT 2025
Sat Nov 29 06:31:53 EST 2025
Tue Nov 18 22:32:58 EST 2025
Wed Aug 27 02:49:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-c7d070804816b235032f0333edb5ed080f488aa31650e37ecbd3c775b30e84fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3952-3701
OpenAccessLink https://ieeexplore.ieee.org/document/9698076
PQID 2627845784
PQPubID 4845423
PageCount 13
ParticipantIDs proquest_journals_2627845784
crossref_primary_10_1109_ACCESS_2022_3147797
ieee_primary_9698076
doaj_primary_oai_doaj_org_article_7a6b7f5ea3ee47b9a25079a0c7f14857
crossref_citationtrail_10_1109_ACCESS_2022_3147797
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
Fallah (ref48)
ref14
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
Finn (ref47); 70
ref18
ref51
ref50
ref46
ref45
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref42
  doi: 10.1109/LRA.2018.2797241
– ident: ref12
  doi: 10.1016/j.mechmachtheory.2020.104062
– ident: ref31
  doi: 10.1089/soro.2015.0006
– ident: ref9
  doi: 10.1109/LRA.2021.3061311
– ident: ref13
  doi: 10.1080/01691864.2018.1554507
– ident: ref26
  doi: 10.1089/soro.2017.0079
– ident: ref45
  doi: 10.1109/ICRA.2019.8793653
– ident: ref6
  doi: 10.1109/ROBOSOFT.2018.8404928
– ident: ref39
  doi: 10.3390/app10228031
– volume: 70
  start-page: 1126
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref47
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
– ident: ref46
  doi: 10.1109/TPAMI.2021.3079209
– ident: ref7
  doi: 10.1002/adma.201203002
– ident: ref25
  doi: 10.1109/TRO.2009.2022426
– ident: ref29
  doi: 10.1109/ROBOSOFT.2019.8722721
– ident: ref14
  doi: 10.1080/01691864.2015.1036772
– ident: ref53
  doi: 10.1109/IROS.2018.8594451
– ident: ref36
  doi: 10.1016/j.mechmachtheory.2021.104429
– ident: ref41
  doi: 10.1109/DEVLRN.2011.6037368
– ident: ref54
  doi: 10.1007/978-3-319-33714-2_6
– ident: ref43
  doi: 10.1088/1748-3190/aa839f
– ident: ref44
  doi: 10.1109/IROS.2017.8206123
– ident: ref1
  doi: 10.1038/nature14543
– ident: ref51
  doi: 10.1109/TRO.2018.2878318
– ident: ref22
  doi: 10.1109/ICRA.2019.8794238
– ident: ref18
  doi: 10.1016/j.sna.2011.03.008
– ident: ref10
  doi: 10.1109/TRO.2014.2314777
– ident: ref23
  doi: 10.1089/soro.2017.0111
– ident: ref30
  doi: 10.1016/j.mechmachtheory.2016.06.010
– ident: ref19
  doi: 10.1109/TMECH.2016.2613410
– ident: ref24
  doi: 10.1109/TRO.2008.2002311
– ident: ref28
  doi: 10.1109/ICRA.2015.7139904
– ident: ref50
  doi: 10.1108/ir-04-2021-0070
– ident: ref33
  doi: 10.1109/TMECH.2021.3055339
– ident: ref32
  doi: 10.15607/RSS.2019.XV.076
– ident: ref40
  doi: 10.1109/TRO.2015.2428511
– ident: ref2
  doi: 10.1109/LRA.2021.3061379
– ident: ref15
  doi: 10.1016/j.rcim.2016.09.004
– ident: ref35
  doi: 10.1109/TRO.2018.2868815
– ident: ref21
  doi: 10.1088/1748-3190/10/3/035002
– ident: ref8
  doi: 10.1002/rob.10070
– ident: ref3
  doi: 10.1016/j.mechmachtheory.2020.104221
– ident: ref37
  doi: 10.1109/LRA.2021.3086413
– ident: ref38
  doi: 10.3390/app9061142
– ident: ref20
  doi: 10.1109/IROS.2011.6094477
– ident: ref5
  doi: 10.1007/s12369-021-00761-1
– ident: ref49
  doi: 10.1089/soro.2016.0051
– ident: ref16
  doi: 10.1177/0278364910368147
– ident: ref4
  doi: 10.1016/j.arcontrol.2017.09.006
– ident: ref34
  doi: 10.1177/0278364919842269
– ident: ref11
  doi: 10.1163/156855306777361631
– ident: ref52
  doi: 10.1109/RoboSoft48309.2020.9116003
– ident: ref17
  doi: 10.1109/IROS.2012.6385596
– start-page: 1082
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  ident: ref48
  article-title: On the convergence theory of gradient-based model-agnostic meta-learning algorithms
– ident: ref27
  doi: 10.1089/soro.2018.0047
SSID ssj0000816957
Score 2.2816217
Snippet Predicting tip positions of a spring based continuum manipulator is highly challenging due to its nonlinear deformations. External loading on the tip further...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14980
SubjectTerms Actuators
Adaptation models
Algorithms
Closed loops
Continuum robot
Controllers
Errors
Experimentation
Kinematics
Learning
Loading
Manipulators
meta learning
Model accuracy
model-less control
Prototypes
Robot arms
Robots
Stiffness
Task analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ4tAeKihF3RaQDz20UiO8cRLbx7AU9cAiDlTiZvlZIUEWQbZSr_xyZmyzWgmpvXCM4_g1Y89M8uUbQr4YpVqL5INWcl81nMnKgt2umIgdiyLYGHKyCXF-Lq-u1MVaqi_EhGV64LxwR8J0VsQ2GB5CI6wyYLOFMsyJCJ58m_4jh4K1YCqdwXLaqVYUmqEpU0f9bAYzgoCwriFObYRAmqc1U5QY-0uKlRfncjI2p9vkXfESaZ9Ht0M2wvCevF3jDtwljz1FDOBfuhjoRUFe0VkGntNFpCZdXA_L5S20c0sTNoDO-_kZ_YoJ0G6qHjF20AGdh9FUhWj19zcKbiztvblDQDQ9KQlURnq2SHB7bNZnnNcH8uv0x-XsZ1USKlSuYXKsnPCwwyVSxHS25i3jdWSc8-BtGzzciLCdjeFTcNsCF8FZz50QKMwgm-j4HtkcFkP4SCh4EVI5GwJ4gA06DV76Nk5B9JF7UbsJqZ_XVrvCNo5JL250ijqY0lkgGgWii0Am5PvqobtMtvHv6scotFVVZMpOBaA_uuiP_p_-TMguinzViOqUZKKbkP1nFdBlVz_ousPPtHDGNZ9eo-vP5A1OJ7_Q2Seb4_0yHJAt92e8frg_TAr9BJJj9cQ
  priority: 102
  providerName: Directory of Open Access Journals
Title A Study on Position Control of a Continuum Arm Using MAML (Model-Agnostic Meta-Learning) for Adapting Different Loading Conditions
URI https://ieeexplore.ieee.org/document/9698076
https://www.proquest.com/docview/2627845784
https://doaj.org/article/7a6b7f5ea3ee47b9a25079a0c7f14857
Volume 10
WOSCitedRecordID wos000754230500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbaigMcKFBQlz7kAweQGpqNkzg-pksrDt2qB5B6s_wYo0ptUrVZJC4c-OWdcdyoEhUSlygPx3H0-TFjf_6GsQ9GqcqS-KBthM9KkTeZxXE7y2Wo8yDBBhiDTcizs-biQp2vsYNpLwwARPIZfKbTuJbve7eiqbJDVasG_e51ti5lPe7VmuZTKICEqmQSFprn6rBdLPAf0AUsCvRMSylJ2OnR4BM1-lNQlb964ji8nGz-X8FesZfJjOTtiPtrtgbdG_bikbjgFvvTciIJ_uJ9x88TNYsvRmY67wM38eKyW62uMZ9rHskDfNkuT_lHipB2lbVEwsMP8CUMJktKrD8-cbRzeevNDTGm-ZcUYWXgp33k41O2fiSCvWXfT46_Lb5mKeJC5sq8GTInPXYBDWnI1LYQVS6KkAshwNsKPD4I2N6NEXO060BIcNYLJyWhDU0ZnHjHNrq-g23G0cxolLMAaCKWZFX4xldhjnUjCC8LN2PFAxTaJTlyiopxpaNbkis94qcJP53wm7GD6aWbUY3j38mPCOMpKUlpxxsInk4tU0tTWxkqMAKglFYZNAqlMrmTAV3FCjPZIsCnTBLWM7b7UGN0avZ3uqhpHRc7wfL902_tsOdUwHEOZ5dtDLcr2GPP3M_h8u52P04I4HH5-3g_1u57tOn09w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKQQIOvApioYAPHEBqqDdO4vgYFqoidlc9FKk3K7bHqFKbVG0WiSu_nBnHjSqBkLjlYTuOPj9m7M_fMPa21bq0JD5oa-mzQoo6szhvZ0KFSgQFNsAYbEKt1_XJiT7aYnvTWRgAiOQz-ECXcS_f925DS2X7utI1-t232O2yKHIxntaaVlQohIQuVZIWmgu93ywW-BfoBOY5-qaFUiTtdGP6iSr9KazKH2NxnGAOHv5f1R6xB8mQ5M2I_GO2Bd0Tdv-GvOAO-9Vwogn-5H3HjxI5iy9GbjrvA2_jzWm32ZxjOec80gf4qlkt-TuKkXaWNUTDww_wFQxtlrRYv7_naOnyxrcXxJnmn1KMlYEv-8jIp2L9SAV7yr4dfD5eHGYp5kLmClEPmVMeB4GaVGQqm8tSyDwIKSV4W4LHFwF7fNvKOVp2IBU466VTivCGughOPmPbXd_Bc8bR0Ki1swBoJBZkV_jal2GOrSNIr3I3Y_k1FMYlQXKKi3FmomMitBnxM4SfSfjN2N6U6WLU4_h38o-E8ZSUxLTjAwTPpL5pVFtZFUpoJUChrG7RLFS6FU4FdBZLLGSHAJ8KSVjP2O51izGp41-ZvKKdXBwGixd_z_WG3T08Xi3N8sv660t2jyo7rujssu3hcgOv2B33Yzi9unwdW_dvCaD2GA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Study+on+Position+Control+of+a+Continuum+Arm+Using+MAML+%28Model-Agnostic+Meta-Learning%29+for+Adapting+Different+Loading+Conditions&rft.jtitle=IEEE+access&rft.au=Sahoo%2C+Alok+Ranjan&rft.au=Chakraborty%2C+Pavan&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=14980&rft.epage=14992&rft_id=info:doi/10.1109%2FACCESS.2022.3147797&rft.externalDocID=9698076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon