Constraint-Handling Techniques for the Concurrent Design of a Five-Bar Parallel Robot

In this paper, a concurrent structure-control design is applied to a five-bar parallel robot in order to minimize the tracking error in a high-speed task. The high power necessary to perform the task leads to a challenging problem in handling a physical constraint on the maximum torque as well as on...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 5; s. 23010 - 23021
Hlavní autori: Cervantes-Culebro, Hector, Cruz-Villar, Carlos A., Martinez Peñaloza, Maria-Guadalupe, Mezura-Montes, Efren
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, a concurrent structure-control design is applied to a five-bar parallel robot in order to minimize the tracking error in a high-speed task. The high power necessary to perform the task leads to a challenging problem in handling a physical constraint on the maximum torque as well as on the structure-control design parameters. Three constraint-handling techniques, the feasibility rules, ε-constrained method and stochastic ranking have been used to analyze how the design changes as the torque constraint are reduced. Studying torque reduction is important from the energy consumption point of view, as well as the use of lighter and cheaper motors. In addition, a comparison among the three constraint-handling techniques is implemented so as to observe the performance and quality of the obtained results. The final results suggest that stochastic ranking method always obtains feasible and successful solutions in all proposed torque limits.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2017.2764883