Harnessing tissue-specific genome editing in plants through CRISPR/Cas system: current state and future prospects
Main conclusion In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. CRISPR/Cas is a powerful genome-editing to...
Saved in:
| Published in: | Planta Vol. 255; no. 1; p. 28 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0032-0935, 1432-2048, 1432-2048 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Main conclusion
In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement.
CRISPR/Cas is a powerful genome-editing tool with a wide range of applications for the genetic improvement of crops. However, the constitutive genome editing of vital genes is often associated with pleiotropic effects on other genes, needless metabolic burden, or interference in the cellular machinery. Tissue-specific genome editing (TSGE), on the other hand, enables researchers to study those genes in specific cells, tissues, or organs without disturbing neighboring groups of cells. Until recently, there was only limited proof of the TSGE concept, where the CRISPR-TSKO tool was successfully used in
Arabidopsis
, tomato, and cotton, laying a solid foundation for crop improvement. In this review, we have laid out valuable insights into the concept and application of TSGE on relatively unexplored areas such as grain trait improvement under favorable or unfavorable conditions. We also enlisted some of the prominent tissue-specific promoters and described the procedure of their isolation with several TSGE promoter expression systems in detail. Moreover, we highlighted potential negative regulatory genes that could be targeted through TSGE using tissue-specific promoters. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. |
|---|---|
| AbstractList | MAIN CONCLUSION: In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. CRISPR/Cas is a powerful genome-editing tool with a wide range of applications for the genetic improvement of crops. However, the constitutive genome editing of vital genes is often associated with pleiotropic effects on other genes, needless metabolic burden, or interference in the cellular machinery. Tissue-specific genome editing (TSGE), on the other hand, enables researchers to study those genes in specific cells, tissues, or organs without disturbing neighboring groups of cells. Until recently, there was only limited proof of the TSGE concept, where the CRISPR-TSKO tool was successfully used in Arabidopsis, tomato, and cotton, laying a solid foundation for crop improvement. In this review, we have laid out valuable insights into the concept and application of TSGE on relatively unexplored areas such as grain trait improvement under favorable or unfavorable conditions. We also enlisted some of the prominent tissue-specific promoters and described the procedure of their isolation with several TSGE promoter expression systems in detail. Moreover, we highlighted potential negative regulatory genes that could be targeted through TSGE using tissue-specific promoters. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. CRISPR/Cas is a powerful genome-editing tool with a wide range of applications for the genetic improvement of crops. However, the constitutive genome editing of vital genes is often associated with pleiotropic effects on other genes, needless metabolic burden, or interference in the cellular machinery. Tissue-specific genome editing (TSGE), on the other hand, enables researchers to study those genes in specific cells, tissues, or organs without disturbing neighboring groups of cells. Until recently, there was only limited proof of the TSGE concept, where the CRISPR-TSKO tool was successfully used in Arabidopsis, tomato, and cotton, laying a solid foundation for crop improvement. In this review, we have laid out valuable insights into the concept and application of TSGE on relatively unexplored areas such as grain trait improvement under favorable or unfavorable conditions. We also enlisted some of the prominent tissue-specific promoters and described the procedure of their isolation with several TSGE promoter expression systems in detail. Moreover, we highlighted potential negative regulatory genes that could be targeted through TSGE using tissue-specific promoters. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement.MAIN CONCLUSIONIn a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. CRISPR/Cas is a powerful genome-editing tool with a wide range of applications for the genetic improvement of crops. However, the constitutive genome editing of vital genes is often associated with pleiotropic effects on other genes, needless metabolic burden, or interference in the cellular machinery. Tissue-specific genome editing (TSGE), on the other hand, enables researchers to study those genes in specific cells, tissues, or organs without disturbing neighboring groups of cells. Until recently, there was only limited proof of the TSGE concept, where the CRISPR-TSKO tool was successfully used in Arabidopsis, tomato, and cotton, laying a solid foundation for crop improvement. In this review, we have laid out valuable insights into the concept and application of TSGE on relatively unexplored areas such as grain trait improvement under favorable or unfavorable conditions. We also enlisted some of the prominent tissue-specific promoters and described the procedure of their isolation with several TSGE promoter expression systems in detail. Moreover, we highlighted potential negative regulatory genes that could be targeted through TSGE using tissue-specific promoters. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. Main conclusionIn a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement.CRISPR/Cas is a powerful genome-editing tool with a wide range of applications for the genetic improvement of crops. However, the constitutive genome editing of vital genes is often associated with pleiotropic effects on other genes, needless metabolic burden, or interference in the cellular machinery. Tissue-specific genome editing (TSGE), on the other hand, enables researchers to study those genes in specific cells, tissues, or organs without disturbing neighboring groups of cells. Until recently, there was only limited proof of the TSGE concept, where the CRISPR-TSKO tool was successfully used in Arabidopsis, tomato, and cotton, laying a solid foundation for crop improvement. In this review, we have laid out valuable insights into the concept and application of TSGE on relatively unexplored areas such as grain trait improvement under favorable or unfavorable conditions. We also enlisted some of the prominent tissue-specific promoters and described the procedure of their isolation with several TSGE promoter expression systems in detail. Moreover, we highlighted potential negative regulatory genes that could be targeted through TSGE using tissue-specific promoters. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. Main conclusion In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. CRISPR/Cas is a powerful genome-editing tool with a wide range of applications for the genetic improvement of crops. However, the constitutive genome editing of vital genes is often associated with pleiotropic effects on other genes, needless metabolic burden, or interference in the cellular machinery. Tissue-specific genome editing (TSGE), on the other hand, enables researchers to study those genes in specific cells, tissues, or organs without disturbing neighboring groups of cells. Until recently, there was only limited proof of the TSGE concept, where the CRISPR-TSKO tool was successfully used in Arabidopsis , tomato, and cotton, laying a solid foundation for crop improvement. In this review, we have laid out valuable insights into the concept and application of TSGE on relatively unexplored areas such as grain trait improvement under favorable or unfavorable conditions. We also enlisted some of the prominent tissue-specific promoters and described the procedure of their isolation with several TSGE promoter expression systems in detail. Moreover, we highlighted potential negative regulatory genes that could be targeted through TSGE using tissue-specific promoters. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. CRISPR/Cas is a powerful genome-editing tool with a wide range of applications for the genetic improvement of crops. However, the constitutive genome editing of vital genes is often associated with pleiotropic effects on other genes, needless metabolic burden, or interference in the cellular machinery. Tissue-specific genome editing (TSGE), on the other hand, enables researchers to study those genes in specific cells, tissues, or organs without disturbing neighboring groups of cells. Until recently, there was only limited proof of the TSGE concept, where the CRISPR-TSKO tool was successfully used in Arabidopsis, tomato, and cotton, laying a solid foundation for crop improvement. In this review, we have laid out valuable insights into the concept and application of TSGE on relatively unexplored areas such as grain trait improvement under favorable or unfavorable conditions. We also enlisted some of the prominent tissue-specific promoters and described the procedure of their isolation with several TSGE promoter expression systems in detail. Moreover, we highlighted potential negative regulatory genes that could be targeted through TSGE using tissue-specific promoters. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. |
| ArticleNumber | 28 |
| Author | Chikkaputtaiah, Channakeshavaiah Chowdhury, Naimisha Sharma, Monica Singha, Dhanawantari L. Das, Debajit Maharana, Jitendra Sarki, Yogita N. |
| Author_xml | – sequence: 1 givenname: Dhanawantari L. orcidid: 0000-0001-5981-2933 surname: Singha fullname: Singha, Dhanawantari L. email: dhanawantarisingha@gmail.com organization: Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST) – sequence: 2 givenname: Debajit orcidid: 0000-0001-7793-861X surname: Das fullname: Das, Debajit organization: Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST) – sequence: 3 givenname: Yogita N. orcidid: 0000-0002-7905-7362 surname: Sarki fullname: Sarki, Yogita N. organization: Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Academy of Scientific and Innovative Research (AcSIR) – sequence: 4 givenname: Naimisha orcidid: 0000-0002-5043-0776 surname: Chowdhury fullname: Chowdhury, Naimisha organization: Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST) – sequence: 5 givenname: Monica orcidid: 0000-0001-6204-3733 surname: Sharma fullname: Sharma, Monica organization: Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST) – sequence: 6 givenname: Jitendra orcidid: 0000-0003-4628-5956 surname: Maharana fullname: Maharana, Jitendra organization: Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Institute of Biological Chemistry, Academia Sinica – sequence: 7 givenname: Channakeshavaiah orcidid: 0000-0001-7329-8643 surname: Chikkaputtaiah fullname: Chikkaputtaiah, Channakeshavaiah email: channakeshav@neist.res.in organization: Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Academy of Scientific and Innovative Research (AcSIR) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34962611$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1v1DAQhi1URLeFP8ABWeLCJXT8ESfhhlb0Q6oEKr1HTjzeutp1th7n0H-PwxaQeqi42JbmeT0z73vCjuIUkbH3Aj4LgOaMALSsK5CiAtWKcr5iK6GVrCTo9oitAMobOlUfsxOie4BSbJo37FjpzkgjxIo9XNoUkSjEDc-BaMaK9jgGH0a-wTjtkKMLeSmHyPdbGzPxfJemeXPH1zdXP3_cnK0tcXqkjLsvfJxTwpg5ZZuR2-i4n_OckO_TtHyc6S177e2W8N3Tfcpuz7_dri-r6-8XV-uv19Wooc3V4FuPSgsYQA1d1xgHox8MulErVQvr684Z451vam2cts5L70FIsK5xZlCn7NPh29L4YUbK_S7QiNuyAU4z9dIoo2UnBPwHKmpRbOx0QT8-Q--nOcWyx0LpbolBFurDEzUPO3T9PoWdTY_9H9sLIA_AWFyhhP4vIqBfsu0P2fYl2_53tv0yZvtMNIbicphiTjZsX5aqg5RKn7jB9G_sF1S_AGMXuGE |
| CitedBy_id | crossref_primary_10_1093_jxb_erae147 crossref_primary_10_1111_pbi_14533 crossref_primary_10_3389_fpls_2022_1042828 crossref_primary_10_3390_agriculture15010029 crossref_primary_10_1186_s42397_023_00140_3 crossref_primary_10_3390_plants11040524 crossref_primary_10_3390_cimb46100659 crossref_primary_10_1007_s00425_025_04747_5 crossref_primary_10_1371_journal_pgen_1011438 crossref_primary_10_3390_cimb46120865 crossref_primary_10_1007_s00425_022_03894_3 crossref_primary_10_1111_aab_70011 crossref_primary_10_1007_s12298_024_01423_y crossref_primary_10_3389_fgeed_2023_1094965 crossref_primary_10_54112_bbasr_v2023i1_37 crossref_primary_10_1016_j_sajb_2024_07_038 |
| Cites_doi | 10.1371/journal.pgen.1003352 10.1073/pnas.1420294112 10.1186/s13007-018-0305-8 10.1007/s00425-014-2180-5 10.1080/21655979.2017.1282018 10.1093/nar/gkt780 10.1104/pp.15.01192 10.1186/s13578-019-0298-7 10.1111/pbi.13068 10.1186/1471-2229-11-162 10.1021/acssynbio.7b00362 10.1105/tpc.7.12.2039 10.1038/7029 10.1111/jipb.12152 10.1007/BF00019510 10.1038/s41438-020-00355-4 10.1038/s41477-020-0695-2 10.1073/pnas.95.9.5172 10.1038/s41392-019-0089-y 10.1126/science.aad5147 10.1016/j.jare.2020.10.003 10.1128/mSphere.00403-17 10.3389/fpls.2020.584151 10.3389/fpls.2016.00967 10.1038/nprot.2007.425 10.1016/j.tplants.2007.01.002 10.1186/1472-6750-13-29 10.1104/pp.107.096966 10.1105/tpc.2.12.1201 10.1186/s13059-015-0715-0 10.1016/j.envexpbott.2020.104087 10.1038/s41467-018-06129-w 10.1038/nature24023 10.1007/s00438-020-01738-x 10.1007/s00299-009-0707-1 10.1016/j.jplph.2012.05.001 10.1006/viro.1997.8637 10.1007/s11105-013-0646-4 10.1002/biot.201700561 10.3389/fpls.2018.00260 10.1104/pp.15.00636 10.1016/j.plantsci.2013.02.002 10.1080/15476286.2018.1504546 10.1007/s00425-003-1098-0 10.1016/j.plantsci.2010.07.016 10.1134/S1021443707030090 10.1023/A:1006157603096 10.1023/A:1010684908364 10.1038/srep26685 10.1186/s13068-018-1049-4 10.3390/ijms19123925 10.3389/fpls.2016.00377 10.1007/s00299-016-2000-4 10.1371/journal.pone.0236943 10.1007/BF02772805 10.3389/fpls.2019.01173 10.1038/s41438-020-00363-4 10.1023/A:1019866029629 10.1016/j.molcel.2014.04.022 10.1038/nbt.2654 10.1016/j.molp.2017.03.001 10.1038/ng2014 10.1038/srep26912 10.1038/nature13579 10.1093/jxb/ern110 10.1007/s00425-011-1432-x 10.1016/j.jgg.2013.12.001 10.1073/pnas.1808585115 10.1038/srep46890 10.1007/s11103-011-9796-7 10.1007/s00299-019-02371-8 10.1016/j.xplc.2020.100020 10.1073/pnas.1313587110 10.1016/j.plaphy.2011.02.005 10.1371/journal.pone.0242949 10.1007/s00299-010-0945-2 10.1105/tpc.3.4.371 10.1016/j.molp.2019.03.011 10.3390/ijms19061667 10.1007/s00299-012-1238-8 10.1016/j.molp.2015.10.004 10.1007/s00299-010-08517 10.1038/s41467-017-02350-1 10.1016/j.envexpbot.2020.104056 10.1534/genetics.111.134890 10.1038/nbt.2908 10.1016/j.molp.2016.05.001 10.1016/j.gene.2014.12.029 10.1038/srep10342 10.1016/j.jgg.2017.09.010 10.1016/j.plaphy.2020.01.036 10.1007/s00299-016-2062-3 10.1007/s11105-012-0458-y 10.1016/j.plantsci.2020.110613 10.1007/s00299-010-0816-x 10.1007/s00438-016-1262-4 10.1146/annurev.bi.51.070182.000425 10.1016/0092-8674(83)90331-8 10.1016/j.plantsci.2019.110301 10.1038/s41467-018-04416-0 10.1105/tpc.19.00454 10.1007/s11816-020-00612-x 10.1007/s11103-020-00989-x 10.1023/A:1005898624425 10.1186/s12934-020-01431-z 10.1186/1746-4811-4-6 10.1126/science.1138140 10.1016/B978-0-12-801185-0.00022-2 10.1105/tpc.16.00922 10.1186/s12870-019-2198-8 10.1270/jsbbs.62.133 10.1007/s11103-015-0342-x 10.1111/mpp.12546 10.1023/a:1005954621558 10.1093/jxb/ert180 10.1007/s12374-020-09272-4 10.1023/a:1016313924844 10.1111/nph.15279 10.1016/j.virusres.2017.10.009 10.1104/pp.111.175000 10.1038/srep41947 10.1007/s10059-012-0068-4 10.1016/j.ygeno.2020.09.024 10.1186/s13068-019-1467-y 10.1023/A:1014910900312 10.1104/pp.110.159517 10.1038/srep18256 10.1126/science.abb1400 10.1073/pnas.93.10.5055 10.1371/journal.pone.0181963 10.1023/a:1006312228617 10.4161/psb.3.9.5820 10.1259/bjr.20130685 10.3390/ijms19072009 10.1007/s00299-011-1003-4 10.1038/nplants.2017.18 10.3390/ijms20194702 10.1007/BF02464887 10.1111/pbi.12468 10.1126/science.aba8853 10.3389/fpls.2017.02049 10.1038/ng.220 10.1093/jxb/erw226 10.3389/fpls.2020.602680 10.1038/nbt.2969 10.1016/j.cell.2015.09.038 10.21273/JASHS.132.4.551 10.3389/fpls.2014.00273 10.1111/j.1365-313X.2010.04302.x2.x 10.1104/pp.15.00793 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7TM 7X2 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0K M0S M1P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 7S9 L.6 |
| DOI | 10.1007/s00425-021-03811-0 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Agricultural & Environmental Science Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic Agricultural Science Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture Ecology Forestry Botany |
| EISSN | 1432-2048 |
| EndPage | 28 |
| ExternalDocumentID | 34962611 10_1007_s00425_021_03811_0 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Council of Scientific and Industrial Research, India grantid: MLP-0007 funderid: http://dx.doi.org/10.13039/501100001412 – fundername: Science and Engineering Research Board grantid: PDF/2018/002632 funderid: http://dx.doi.org/10.13039/501100001843 – fundername: Council of Scientific and Industrial Research, India grantid: MLP-0007 – fundername: Science and Engineering Research Board grantid: PDF/2018/002632 |
| GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C .86 06C 06D 0R~ 0VY 123 199 1SB 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~F 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 7X7 88A 88E 8AO 8CJ 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAGAY AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACHIC ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADYPR ADZKW AEBTG AEEJZ AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AICQM AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D1J DATOO DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECGQY EDH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FA8 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IPSME ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M0K M0L M1P M4Y M7P MA- MQGED MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT P0- P19 P2P PF- PQQKQ PROAC PSQYO PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SA0 SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XJT YLTOR Z45 Z7U Z7V Z7W Z7Y Z81 Z83 Z8O Z8P Z8Q Z8S Z8U Z8W ZCG ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ABUFD ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QP 7QR 7TM 7XB 8FD 8FK AZQEC DWQXO ESTFP FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI RC3 7X8 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c408t-bf8fe3410b03b9976d0cfb6edc43351af59d66fdf7546d4adf2ff0120ad7d6b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000736152400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0032-0935 1432-2048 |
| IngestDate | Thu Oct 02 12:10:21 EDT 2025 Sun Nov 09 09:31:59 EST 2025 Wed Nov 05 00:46:01 EST 2025 Mon Jul 21 05:45:15 EDT 2025 Sat Nov 29 04:05:42 EST 2025 Tue Nov 18 22:36:12 EST 2025 Fri Feb 21 02:46:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | CRISPR-TSKO Tissue-specific promoters (TSPs) Abiotic stress Tissue-specific genome editing (TSGE) Crop improvement Biotic stress CRISPR-Cas9/Cas12a |
| Language | English |
| License | 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-bf8fe3410b03b9976d0cfb6edc43351af59d66fdf7546d4adf2ff0120ad7d6b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-6204-3733 0000-0001-5981-2933 0000-0002-5043-0776 0000-0001-7793-861X 0000-0002-7905-7362 0000-0003-4628-5956 0000-0001-7329-8643 |
| PMID | 34962611 |
| PQID | 2614938112 |
| PQPubID | 54047 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2636429110 proquest_miscellaneous_2615109394 proquest_journals_2614938112 pubmed_primary_34962611 crossref_primary_10_1007_s00425_021_03811_0 crossref_citationtrail_10_1007_s00425_021_03811_0 springer_journals_10_1007_s00425_021_03811_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationSubtitle | An International Journal of Plant Biology |
| PublicationTitle | Planta |
| PublicationTitleAbbrev | Planta |
| PublicationTitleAlternate | Planta |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Saed, Ismail, Zainal, Abdullah (CR97) 2012; 1691 Fu, Xue (CR30) 2010; 154 Decaestecker, Buono, Pfeiffer, Vangheluwe, Jourquin, Karimi, Van Isterdael, Beeckman, Nowack, Jacobs (CR22) 2019; 31 Liang, Eudes, Yogiswara, Jing, Benites, Yamanaka, Cheng-Yue, Baidoo, Mortimer, Scheller, Loque (CR64) 2019; 12 Wang, Xing, Dong, Zhang, Han, Wang, Chen (CR124) 2015; 16 Ficker, Wemmer, Thompson (CR28) 1997; 35 Li, Yang, Hong, Huang, Wu, Zhao (CR59) 2020; 5 Rusconi, Simeoni, Francia, Cominelli, Conti, Riboni, Simoni, Martin, Tonelli, Galbiati (CR95) 2013; 64 Tan, Yang, Zhang, Zheng, Qu, Mu, Fu, Li, Guan, Zhang, Wang, Zuo (CR110) 2011; 156 Meyer, Mumm, Imes, Endler, Weder, Al-Rasheid, Geiger, Marten, Martinoia, Hedrich (CR76) 2010; 63 Jiang, Zhou, Bi, Fromm, Yang, Weeks (CR44) 2013; 41 Kakrana, Kumar, Satheesh, Abdin, Subramaniam, Bhattacharya, Jain (CR46) 2017; 8 Tang, Xu, Ma, Wang, Liu, Wan, Shan (CR113) 2018; 9 Li, Liu, Yu, Liu, Wu (CR54) 2013; 207 Lowder, Zhang, Baltes, Paul, Tang, Zheng, Voytas, Hsieh, Zhang, Qi (CR71) 2015; 169 Walton, Christie, Whittaker, Kleinstiver (CR120) 2020; 368 Xie, Tang, He, Liu, Zhou, Liu, Ge, Li, Liu, Zhao, Qu (CR133) 2018; 13 Arango, Salazar, Welsch, Sarmiento, Beyer, Al-Babili (CR8) 2010; 29 Twell, Wing, Yamaguchi, McCormick (CR117) 1989; 217 Carsolio, Campos, Sanchez, Rocha-Sosa (CR17) 1994; 26 Zhang, Bohl-Zenger, Pounti-Kaerlas, Potrykus, Gruissem (CR144) 2003; 218 Zhong, Sretenovic, Ren, Yang, Bao, Qi, Yuan, He, Liu, Liu, Wang, Huang, Wang, Baby, Wang, Zhang, Qi, Zhang (CR147) 2019; 12 Annadana, Beekwilder, Kuipers, Visser, Outchkourov, Pereira, Udayakumar, De Jong, Jongsma (CR6) 2002; 11 Wang, MacFarlane, Maule (CR121) 1997; 234 Zavallo, Lopez Bilbao, Hopp, Heinz (CR142) 2010; 2 Goto, Yoshihara, Shigemoto, Toki, Takaiwa (CR34) 1999; 17 Yang, Costa, Leonhardt, Seigel, Schroider (CR137) 2008; 4 Yu, Zheng, Shan, Meng, Vingron, Liu, Zhu (CR139) 2014; 5 Yu, Kim, Ma, Jia, Guo, Xie, Kwak, Zhang, Bian (CR140) 2020; 14 Ali, Ali, Taskandi, Zaidy, Mahfouz (CR2) 2016; 6 Francia, Simoni, Cominelli, Tonelli, Galbiati (CR29) 2008; 3 Lei, Sun, Wang, Yu, Dei, Li, Zhang, Zhang (CR51) 2020; 7 Ren, Zhong, Wang, You, Li, Yuan, He, Qi, Tang, Zheng, Zhang (CR94) 2019; 10 Zhou, Li, Zheng, Xu, Zheng, Yang, Chen, Yu, Yan, Chen, Wang (CR149) 2020; 11 Szostak, Orr-Weaver, Rothstein, Stahl (CR109) 1983; 33 Yan, Wei, Wu, Hu, Li, Yang, Xie (CR136) 2015; 8 He, Naqvi, McLellan, Boevink, Champouret, Hein, Birch (CR38) 2018; 115 Puchta, Dujon, Hohn (CR92) 1996; 93 Tang, Ren, Yang, Bao, Zhong, He, Liu, Qi, Liu, Wang, Sretenovic (CR114) 2019; 17 Bandyopadhyay, Kancharla, Javalkote, Dasgupta, Brutnell (CR10) 2020; 11 Chen, Miao, Wang, Su, Li, Wang, Hao, Yang, He, Gao (CR19) 2012; 30 Wang, Tao, Tian, Guo, Chen, Xu, Shang, Hu (CR130) 2017; 12 Koltunow, Truettner, Cox, Walroth, Goldberg (CR49) 1990; 2 Oh, Kwon, Kim, Noh, Hong, Lee (CR85) 2011; 77 Singer, Hily, Cox (CR102) 2011; 234 Venter (CR118) 2007; 12 Qu, Xing, Liu, Xu, Song (CR93) 2008; 59 Li, Norville, Aach, McCormack, Zhang, Bush, Church, Sheen (CR53) 2013; 31 Sun, Hu, Chen, Jiang, Song, Zhang, Xi (CR107) 2015; 5 Li, Zhang, Sheen (CR55) 2014; 546 Ma, Liang, Lv, Guan, Jiang, Cheng (CR72) 2020; 290 Mikami, Toki, Endo (CR78) 2015; 88 Naoumkina, Dixon (CR82) 2011; 30 Wang, Cao, Guan, Kong, Wang, Cui, Liu, Zhou, Zhang (CR129) 2020; 149 Cermak, Curtin, Gil Humanes, Čegan, Kono, Konečná, Belanto, Starker, Mathre, Greenstein (CR18) 2017; 29 Zetsche, Gootenberg, Abudayyeh, Slaymaker, Makarova, Essletzbichler, Volz, Joung, van der Oost, Regev, Koonin, Zhang (CR143) 2015; 163 Gao, Zhao (CR32) 2014; 56 Feng, Zhang, Hua, Gao, Mao, Botella, Zhu (CR27) 2018; 19 Wang, Zhu, Ye, Liu, Zhou, Chen, Lin (CR125) 2016; 5 Arnoult, Correia, Ma, Merlo, Garcia-Gomez, Maric, Tognetti, Benner, Boulton, Saghatelian, Karlseder (CR9) 2017; 549 Li, Liu, Chen, Tian, Fan, Zhou (CR58) 2019; 19 Sassa, Ushijima, Hirano (CR100) 2002; 50 Zhou, Yang, Wang, Yu, Yu, Chen, Cheng, Yan, Chen (CR148) 2013; 13 Heang, Sassa (CR39) 2012; 62 Wakeley, Rogers, Rozycka, Greenland, Hussey (CR119) 1998; 37 Maeo, Tomiya, Hayashi, Akaiki, Morikama, Ishiguro, Nakamura (CR73) 2001; 46 Cheng, Gong, Zhao, Yang, Zhou, Li, Xiang (CR20) 2017; 44 Stromvik, Sundararaman, Vodkin (CR106) 1999; 41 Lim, Lee, Kim, Lee, Kim, Ahmad, Kim, Yi, Hur, Kwon (CR65) 2012; 34 Wu, El-Mezawy, Shah (CR131) 2011; 30 Miki, Zhang, Zeng, Feng, Zhu (CR79) 2018; 9 Mao, Zhang, Feng, Wei, Zhang, Botella, Zhu (CR74) 2015; 14 Liang, Han, Romanienko, Jasin (CR62) 1998; 95 Eid, Ali, Mahfouz (CR25) 2016; 35 Wang, Wang, Zhu, Hao, Wang, Li, Zhang, He, Lu, Lin, Ma, Zhang, He (CR122) 2008; 40 Yu, Wang, Bai, Wang, Wan, Liu, Ni (CR141) 2020; 176 Xie, Minkenberg, Yang (CR132) 2015; 112 Shen, Lv, Luo, He, Mao, Xi, Ming (CR101) 2017; 7 McLellan, Chen, He, Wu, Boevink, Tian, Birch (CR75) 2020; 1 Zhang, Zhang, Unver, Zhang (CR145) 2021; 29 Yamamoto, Taylor, Acedo, Cheng, Conkling (CR135) 1991; 3 Wang, Cheng, Shan, Zhang, Liu, Gao, Wang, Cheng (CR123) 2014; 32 Tang, Lowder, Zhang, Malzahn, Zheng, Voytas, Zhong, Chen, Ren, Li, Kirkland, Zhang, Qi (CR112) 2017; 3 Wang, Mao, Lu, Tao, Zhu (CR126) 2017; 10 Pausch, Al-Shayeb, Bisom-Rapp, Tsuchida, Li, Cress, Knott, Jacobsen, Banfield, Doudna (CR90) 2020; 369 Ye, Zhou, Lin (CR138) 2012; 31 Ali, Eid, Ali, Mahfouz (CR3) 2018; 244 Kakarougkas, Jeggo (CR45) 2014; 87 O'Malley, Alonso, Kim, Leisse, Ecker (CR86) 2007; 2 Lindahl (CR66) 1982; 51 Osakabe, Osakabe, Chiang (CR87) 2009; 28 Liu, Wu, Feng, Li, Duan, Shen, Yin, Xu, Xiong (CR70) 2021; 296 Guan, Wang, Sun (CR35) 2017; 2 Michiels, Tucker, Van den Ende, Van Laere (CR77) 2003; 21 Buchner, Rochat, Wuilleme, Boutin (CR14) 2002; 49 Feder, Jensen, Wang, Courtney, Middleton, Van Eck, Liu, Giovannoni (CR26) 2020; 7 Bin Moon, Lee, Kang, Lee, Ha, Kim, Kim, Yoo, Kim, Ko, Kim (CR13) 2018; 9 Gago, Grima-Pettenati, Gallego (CR31) 2011; 49 Osakabe, Watanabe, Sugano, Ueta, Ishihara, Shinozaki, Osakabe (CR88) 2016; 6 Li, Li, Zhou, Wu, Fang, Pan, Lin, Luo, Wu, Li (CR57) 2016; 7 Tang, Xu, Li, Zhu, Chen, Shan, Wan (CR115) 2021; 16 Carre, Kay (CR16) 1995; 7 Song, Honda, Yamaguchi (CR103) 2007; 132 Nissim, Perli, Fridkin, Perez-Pinera, Lu (CR84) 2014; 54 Hyun, Kim, Cho, Choi, Kim, Coupland (CR42) 2015; 241 Poliner, Takeuchi, Du, Benning, Farré (CR91) 2018; 7 Wang, Wu, Zhang, Yang, Fan, Zhang, Zhao, Yuan, Zhang (CR127) 2019; 20 Burstin, Marget, Huart, Moessner, Mangin, Duchene, Desprez, Munier-Jolain, Duc (CR15) 2007; 144 Lei, Dai, Li, Yang, Li, Zhang, Zhou, Liu (CR52) 2021; 64 Li, Ouyang, Wang, Luo, Yang, Li, Sima, Zhang, Ye (CR56) 2016; 7 Liu, Yang, Li, Li, Zhou, Zhao, Fan, Lin, Chen (CR68) 2016; 67 Soyano, Kouchi, Hirota, Hayashi (CR105) 2013; 9 Liang, Zhang, Chen, Gao (CR63) 2014; 41 Anders, Niewoehner, Duerst, Jinek (CR4) 2014; 513 Andersson, Turesson, Nicolia, Falt, Samuelsson, Hofvander (CR5) 2017; 36 Lehner, Mudrak, Minesinger, Jinks-Robertson (CR50) 2012; 190 Mohanraju, Makarova, Zetsche, Zhang, Koonin, van der Oost (CR80) 2016; 353 Park, Kang, Nawkar, Lee, Paeng, Chae, Chi, Kim, Yun, Lee (CR89) 2018; 220 Safari, Zare, Negahdaripour, barekati-Mowahed M, Ghasemi Y (CR98) 2019; 9 Liu, Dong, Cui, Cong, Zhang (CR69) 2020; 19 Agarwal, Kumar, Pareek, Sharma (CR1) 2017; 292 Hou, Zhang, Propson, Howden, Chu, Sontheimer, Thomson (CR41) 2013; 110 Sanjari, Shirzadian, Zahra, Shobbar, Shahbazi (CR99) 2019; 38 Wang, Ye, Lyu, Ursache, Löytynoja, Mähönen (CR128) 2020; 6 Svitashev, Young, Schwartz, Gao, Falco, Cigan (CR108) 2015; 169 Tsai, Wyvekens, Khayter, Foden, Thapar, Reyon, Goodwin, Aryee, Joung (CR116) 2014; 32 Aoyagi, Kobayashi, Kozaki (CR7) 2018; 19 Zhu, Xie, Chen, Lee, Loque, Scheller (CR150) 2018; 11 Bernheim, Calvo-Villamañán, Basier, Cui, Rocha, Touchon, Bikard (CR12) 2017; 8 Khong, Pati, Richaud, Parizot, Bidzinski, Mai, Bès, Bourrié, Meynard, Beeckman, Selvaraj, Manabu, Genga, Brugidou, Nang Do, Guiderdoni, Morel, Gantet (CR47) 2015; 169 Cominelli, Galbiati, Albertini, Fornara, Conti, Coupland, Tonelli (CR21) 2011; 11 He, Luo, Wang, Liu, Zhang, Zhu (CR37) 2020; 176 Kim, Lim, Jang (CR48) 2020; 103 Liu, Xia, Wu, Fu, Hayward, Luo, Yan, Xiong, Fu, Wu, Lu (CR67) 2015; 557 Zhong, Yang, Shi, Wang, Wang (CR146) 2018; 19 Dwivedi, Roche, Carman (CR24) 2010; 179 Li, Wang, Cao, Chen, Ma, Lv, Sun, Qiao, Zhu, Zhang, Fan, Ma (CR61) 2021; 113 Barrangou, Fremaux, Deveau, Richards, Boyaval, Moineau, Romero, Horvath (CR11) 2007; 315 Xue, Long, Zhao, Huang, Huang, Zhang, Jiang, Yuan, Pei (CR134) 2018; 19 Jeon, Chung, Lee, Yi, Oh, An (CR43) 1999; 39 Naumkina, Bolyakina, Romanov (CR83) 2007; 54 Du, Lou, Zhang, Jiao, Liu, Wang (CR23) 2014; 32 Helbo, Lay, Jones, Liang, Gronbak (CR40) 2017; 7 Tang, Zheng, Qi, Zhang, Cheng, Tang, Voytas, Zhang (CR111) 2016; 9 Saad, Romdhane, Zouari, Ben Hsouna, Harbaoui, Brini, Ghneim-Herrera (CR96) 2020; 15 Nakade, Yamamoto, Sakuma (CR81) 2017; 8 Li, Tang, Li, Luo, Zhou, Zhang, Lv (CR60) 2020; 299 Song, Huang, Shi, Zhu, Lin (CR104) 2007; 39 Guo, Li, Jin, Xu, Miao, Yang, Miao (CR36) 2018; 14 Gleditzsch, Pausch, Müller-Esparza, Özcan, Guo, Bange, Randau (CR33) 2019; 16 Y Yu (3811_CR140) 2020; 14 Y Zhu (3811_CR150) 2018; 11 E Cominelli (3811_CR21) 2011; 11 G Song (3811_CR103) 2007; 132 JX Liu (3811_CR70) 2021; 296 C Anders (3811_CR4) 2014; 513 M Li (3811_CR57) 2016; 7 X Wang (3811_CR128) 2020; 6 A Michiels (3811_CR77) 2003; 21 J Guo (3811_CR36) 2018; 14 Y Lei (3811_CR51) 2020; 7 E Poliner (3811_CR91) 2018; 7 J Lei (3811_CR52) 2021; 64 A Kakarougkas (3811_CR45) 2014; 87 G Tang (3811_CR115) 2021; 16 RB Saad (3811_CR96) 2020; 15 JW Szostak (3811_CR109) 1983; 33 AM Koltunow (3811_CR49) 1990; 2 M Mikami (3811_CR78) 2015; 88 T Soyano (3811_CR105) 2013; 9 N Arnoult (3811_CR9) 2017; 549 LG Lowder (3811_CR71) 2015; 169 M Naoumkina (3811_CR82) 2011; 30 FF Fu (3811_CR30) 2010; 154 F Liu (3811_CR67) 2015; 557 EM Naumkina (3811_CR83) 2007; 54 F Safari (3811_CR98) 2019; 9 Y Osakabe (3811_CR87) 2009; 28 Q He (3811_CR38) 2018; 115 K Maeo (3811_CR73) 2001; 46 M Ficker (3811_CR28) 1997; 35 D Gleditzsch (3811_CR33) 2019; 16 X He (3811_CR37) 2020; 176 Y Li (3811_CR58) 2019; 19 Y Gao (3811_CR32) 2014; 56 L Nissim (3811_CR84) 2014; 54 Q Ren (3811_CR94) 2019; 10 F Rusconi (3811_CR95) 2013; 64 P Buchner (3811_CR14) 2002; 49 JS Jeon (3811_CR43) 1999; 39 Y Yang (3811_CR137) 2008; 4 S Bin Moon (3811_CR13) 2018; 9 J Guan (3811_CR35) 2017; 2 F Liang (3811_CR62) 1998; 95 X Sun (3811_CR107) 2015; 5 XJ Song (3811_CR104) 2007; 39 Z Ali (3811_CR3) 2018; 244 H Puchta (3811_CR92) 1996; 93 P Zhang (3811_CR144) 2003; 218 T Lindahl (3811_CR66) 1982; 51 RT Walton (3811_CR120) 2020; 368 L Du (3811_CR23) 2014; 32 YT Yamamoto (3811_CR135) 1991; 3 X Li (3811_CR60) 2020; 299 D Wang (3811_CR121) 1997; 234 W Jiang (3811_CR44) 2013; 41 JH Kim (3811_CR48) 2020; 103 Z Feng (3811_CR27) 2018; 19 Y Wang (3811_CR129) 2020; 149 J Arango (3811_CR8) 2010; 29 SD Singer (3811_CR102) 2011; 234 P Agarwal (3811_CR1) 2017; 292 IA Carre (3811_CR16) 1995; 7 P Pausch (3811_CR90) 2020; 369 ZP Wang (3811_CR124) 2015; 16 H Xie (3811_CR133) 2018; 13 Z Hou (3811_CR41) 2013; 110 MV Stromvik (3811_CR106) 1999; 41 H McLellan (3811_CR75) 2020; 1 J Wang (3811_CR130) 2017; 12 K Lehner (3811_CR50) 2012; 190 S Meyer (3811_CR76) 2010; 63 A Bernheim (3811_CR12) 2017; 8 R Barrangou (3811_CR11) 2007; 315 JF Li (3811_CR53) 2013; 31 S Nakade (3811_CR81) 2017; 8 LQ Qu (3811_CR93) 2008; 59 KK Dwivedi (3811_CR24) 2010; 179 JF Li (3811_CR55) 2014; 546 E Wang (3811_CR122) 2008; 40 D Twell (3811_CR117) 1989; 217 X Liu (3811_CR68) 2016; 67 M Xue (3811_CR134) 2018; 19 A Feder (3811_CR26) 2020; 7 M Wang (3811_CR126) 2017; 10 J Oh (3811_CR85) 2011; 77 H Tan (3811_CR110) 2011; 156 Y Li (3811_CR54) 2013; 207 K Xie (3811_CR132) 2015; 112 M Venter (3811_CR118) 2007; 12 F Cheng (3811_CR20) 2017; 44 D Zhang (3811_CR145) 2021; 29 CJ Lim (3811_CR65) 2012; 34 Y Hyun (3811_CR42) 2015; 241 Y Liang (3811_CR64) 2019; 12 L Chen (3811_CR19) 2012; 30 S Annadana (3811_CR6) 2002; 11 Z Liu (3811_CR69) 2020; 19 SQ Tsai (3811_CR116) 2014; 32 P Francia (3811_CR29) 2008; 3 G Tang (3811_CR113) 2018; 9 X Zhong (3811_CR146) 2018; 19 X Tang (3811_CR111) 2016; 9 H Wang (3811_CR127) 2019; 20 T Aoyagi (3811_CR7) 2018; 19 S Svitashev (3811_CR108) 2015; 169 AS Helbo (3811_CR40) 2017; 7 W Decaestecker (3811_CR22) 2019; 31 J Gago (3811_CR31) 2011; 49 PR Wakeley (3811_CR119) 1998; 37 R Ye (3811_CR138) 2012; 31 Z Li (3811_CR61) 2021; 113 T Cermak (3811_CR18) 2017; 29 Y Wang (3811_CR123) 2014; 32 X Tang (3811_CR114) 2019; 17 R Wang (3811_CR125) 2016; 5 H Li (3811_CR59) 2020; 5 M Andersson (3811_CR5) 2017; 36 L Wu (3811_CR131) 2011; 30 B Zetsche (3811_CR143) 2015; 163 X Yu (3811_CR139) 2014; 5 J Zhou (3811_CR149) 2020; 11 L Yan (3811_CR136) 2015; 8 JH Park (3811_CR89) 2018; 220 F Goto (3811_CR34) 1999; 17 R O'Malley (3811_CR86) 2007; 2 J Burstin (3811_CR15) 2007; 144 Y Yu (3811_CR141) 2020; 176 Y Mao (3811_CR74) 2015; 14 J Zhou (3811_CR148) 2013; 13 D Miki (3811_CR79) 2018; 9 D Zavallo (3811_CR142) 2010; 2 X Ma (3811_CR72) 2020; 290 A Eid (3811_CR25) 2016; 35 Z Ali (3811_CR2) 2016; 6 TR Saed (3811_CR97) 2012; 1691 S Sanjari (3811_CR99) 2019; 38 X Tang (3811_CR112) 2017; 3 D Heang (3811_CR39) 2012; 62 Z Zhong (3811_CR147) 2019; 12 A Bandyopadhyay (3811_CR10) 2020; 11 Y Osakabe (3811_CR88) 2016; 6 P Mohanraju (3811_CR80) 2016; 353 J Shen (3811_CR101) 2017; 7 H Sassa (3811_CR100) 2002; 50 J Li (3811_CR56) 2016; 7 GN Khong (3811_CR47) 2015; 169 A Kakrana (3811_CR46) 2017; 8 C Carsolio (3811_CR17) 1994; 26 Z Liang (3811_CR63) 2014; 41 |
| References_xml | – volume: 9 issue: 3 year: 2013 ident: CR105 article-title: NODULE INCEPTION directly targets NF-Y subunit genes to regulate essential processes of root nodule development in publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003352 – volume: 112 start-page: 3570 issue: 11 year: 2015 end-page: 3575 ident: CR132 article-title: Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system publication-title: PNAS doi: 10.1073/pnas.1420294112 – volume: 14 start-page: 40 year: 2018 ident: CR36 article-title: A simple and cost-effective method for screening of CRISPR/Cas9-induced homozygous/biallelic mutants publication-title: Plant Methods doi: 10.1186/s13007-018-0305-8 – volume: 241 start-page: 271 issue: 1 year: 2015 end-page: 284 ident: CR42 article-title: Site-directed mutagenesis in using dividing tissue-targeted RGEN of the CRISPR/Cass system to generate heritable null alleles publication-title: Planta doi: 10.1007/s00425-014-2180-5 – volume: 8 start-page: 265 issue: 3 year: 2017 end-page: 273 ident: CR81 article-title: Cas9, Cpf1 and C2c1/2/3—what's next? publication-title: Bioengineered doi: 10.1080/21655979.2017.1282018 – volume: 41 issue: 20 year: 2013 ident: CR44 article-title: Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt780 – volume: 169 start-page: 2935 issue: 4 year: 2015 end-page: 2949 ident: CR47 article-title: negatively regulates resistance to pathogens and drought tolerance in rice publication-title: Plant Physiol doi: 10.1104/pp.15.01192 – volume: 9 start-page: 36 year: 2019 ident: CR98 article-title: CRISPR Cpf1 proteins: structure, function and implications for genome editing publication-title: Cell Biosci doi: 10.1186/s13578-019-0298-7 – volume: 17 start-page: 1431 issue: 7 year: 2019 end-page: 1445 ident: CR114 article-title: Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing publication-title: Plant Biotechnol J doi: 10.1111/pbi.13068 – volume: 11 start-page: 162 year: 2011 ident: CR21 article-title: DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter publication-title: BMC Plant Biol doi: 10.1186/1471-2229-11-162 – volume: 7 start-page: 962 issue: 4 year: 2018 end-page: 968 ident: CR91 article-title: Nontransgenic marker-free gene disruption by an episomal CRISPR system in the oleaginous microalga, CCMP1779 publication-title: ACS Synth Biol doi: 10.1021/acssynbio.7b00362 – volume: 7 start-page: 2039 year: 1995 end-page: 2051 ident: CR16 article-title: Multiple DNA—protein complexes at a circadian regulated promoter element publication-title: Plant Cell doi: 10.1105/tpc.7.12.2039 – volume: 17 start-page: 282 issue: 3 year: 1999 end-page: 286 ident: CR34 article-title: Iron fortification of rice seed by the soybean ferritin gene publication-title: Nat Biotechnol doi: 10.1038/7029 – volume: 56 start-page: 343 issue: 4 year: 2014 end-page: 349 ident: CR32 article-title: Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing publication-title: J Integr Plant Biol doi: 10.1111/jipb.12152 – volume: 26 start-page: 1995 year: 1994 end-page: 2001 ident: CR17 article-title: The expression of a chimeric nodulin 30-GUS gene is restricted to the rhizobially infected cells in transgenic nodules publication-title: Plant Mol Biol doi: 10.1007/BF00019510 – volume: 7 start-page: 137 year: 2020 ident: CR51 article-title: Woodland strawberry WRKY71 acts as a promoter of flowering via a transcriptional regulatory cascade publication-title: Hortic Res doi: 10.1038/s41438-020-00355-4 – volume: 6 start-page: 766 issue: 7 year: 2020 end-page: 772 ident: CR128 article-title: An inducible genome editing system for plants publication-title: Nat Plants doi: 10.1038/s41477-020-0695-2 – volume: 95 start-page: 5172 year: 1998 end-page: 5177 ident: CR62 article-title: Homology-directed repair is a major double-strand break repair pathway in mammalian cells publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.9.5172 – volume: 5 start-page: 1 issue: 1 year: 2020 ident: CR59 article-title: Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-019-0089-y – volume: 353 start-page: 6299 year: 2016 ident: CR80 article-title: Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems publication-title: Science doi: 10.1126/science.aad5147 – volume: 29 start-page: 207 year: 2021 end-page: 221 ident: CR145 article-title: CRISPR/Cas: a powerful tool for gene function study and crop improvement publication-title: J Adv Res doi: 10.1016/j.jare.2020.10.003 – volume: 2 start-page: e00403-17 issue: 6 year: 2017 ident: CR35 article-title: Chromosomal targeting by the type III-A CRISPR-Cas system can reshape genomes in publication-title: mSphere doi: 10.1128/mSphere.00403-17 – volume: 11 year: 2020 ident: CR10 article-title: CRISPR-Cas12a (Cpf1): a versatile tool in the plant genome editing tool box for agricultural advancement publication-title: Front Plant Sci doi: 10.3389/fpls.2020.584151 – volume: 7 start-page: 967 year: 2016 ident: CR56 article-title: gene suppressed by multiple stresses plays a negative role in abiotic stress tolerance in tomato publication-title: Front Plant Sci doi: 10.3389/fpls.2016.00967 – volume: 2 start-page: 2910 year: 2007 end-page: 2917 ident: CR86 article-title: An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome publication-title: Nat Protoc doi: 10.1038/nprot.2007.425 – volume: 12 start-page: 118 issue: 3 year: 2007 end-page: 124 ident: CR118 article-title: Synthetic promoters: genetic control through cis engineering publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2007.01.002 – volume: 13 start-page: 29 year: 2013 ident: CR148 article-title: Enhanced transgene expression in rice following selection controlled by weak promoters publication-title: BMC Biotechnol doi: 10.1186/1472-6750-13-29 – volume: 144 start-page: 768 issue: 2 year: 2007 end-page: 781 ident: CR15 article-title: Developmental genes have pleiotropic effects on plant morphology and source capacity, eventually impacting on seed protein content and productivity in pea publication-title: Plant Physiol doi: 10.1104/pp.107.096966 – volume: 2 start-page: 1201 year: 1990 end-page: 1224 ident: CR49 article-title: Different temporal and spatial gene expression patterns occur during anther development publication-title: Plant Cell doi: 10.1105/tpc.2.12.1201 – volume: 16 start-page: 144 issue: 1 year: 2015 ident: CR124 article-title: Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation publication-title: Genome Biol doi: 10.1186/s13059-015-0715-0 – volume: 176 year: 2020 ident: CR37 article-title: negatively regulates abiotic stress tolerance in Arabidopsis and cotton publication-title: Environ Exp Bot doi: 10.1016/j.envexpbott.2020.104087 – volume: 9 start-page: 3651 issue: 1 year: 2018 ident: CR13 article-title: Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3′-overhang publication-title: Nat Commun doi: 10.1038/s41467-018-06129-w – volume: 549 start-page: 548 issue: 7673 year: 2017 end-page: 552 ident: CR9 article-title: Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN publication-title: Nature doi: 10.1038/nature24023 – volume: 296 start-page: 179 issue: 1 year: 2021 end-page: 192 ident: CR70 article-title: A celery transcriptional repressor AgERF8 negatively modulates abscisic acid and salt tolerance publication-title: Mol Genet Genom doi: 10.1007/s00438-020-01738-x – volume: 28 start-page: 1309 issue: 9 year: 2009 end-page: 1317 ident: CR87 article-title: Characterization of the tissue-specific expression of phenylalanine ammonia-lyase gene promoter from loblolly pine ( ) in publication-title: Plant Cell Rep doi: 10.1007/s00299-009-0707-1 – volume: 1691 start-page: 290 year: 2012 end-page: 300 ident: CR97 article-title: The stearoyl-acyl-carrier-protein desaturase promoter (Des) from oil palm confers fruit-specific GUS expression in transgenic tomato publication-title: J Plant Physiol doi: 10.1016/j.jplph.2012.05.001 – volume: 234 start-page: 112 year: 1997 end-page: 117 ident: CR121 article-title: Viral determinants of pea early browning virus seed transmission in pea publication-title: Virology doi: 10.1006/viro.1997.8637 – volume: 32 start-page: 234 year: 2014 end-page: 245 ident: CR23 article-title: Construction of flower-specific chimeric promoters and analysis of their activities in transgenic Torenia publication-title: Plant Mol Biol Rep doi: 10.1007/s11105-013-0646-4 – volume: 13 start-page: 10 issue: 4 year: 2018 ident: CR133 article-title: SaCas9 requires 5′-NNGRRT-3′ PAM for sufficient cleavage and possesses higher cleavage activity than SpCas9 or FnCpf1 in human cells publication-title: Biotechnol J doi: 10.1002/biot.201700561 – volume: 9 start-page: 260 year: 2018 ident: CR113 article-title: Seed-specific expression of AtLEC1 increased oil content and altered fatty acid composition in seeds of peanut ( L.) publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00260 – volume: 169 start-page: 971 issue: 2 year: 2015 end-page: 985 ident: CR71 article-title: A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation publication-title: Plant Physiol doi: 10.1104/pp.15.00636 – volume: 207 start-page: 37 year: 2013 end-page: 44 ident: CR54 article-title: Isolation and characterization of two novel root-specific promoters in rice ( L.) publication-title: Plant Sci doi: 10.1016/j.plantsci.2013.02.002 – volume: 16 start-page: 504 issue: 4 year: 2019 end-page: 517 ident: CR33 article-title: PAM identification by CRISPR-Cas s effector complexes: diversified mechanisms and structures publication-title: RNA Biol doi: 10.1080/15476286.2018.1504546 – volume: 218 start-page: 192 year: 2003 end-page: 203 ident: CR144 article-title: Two cassava promoters related to vascular expression and storage root formation publication-title: Planta doi: 10.1007/s00425-003-1098-0 – volume: 179 start-page: 549 year: 2010 end-page: 552 ident: CR24 article-title: Expression in Arabidopsis of a nucellus-specific promoter from watermelon ( ) publication-title: Plant Sci doi: 10.1016/j.plantsci.2010.07.016 – volume: 54 start-page: 350 year: 2007 end-page: 359 ident: CR83 article-title: Organ-specificity and inducibility of patatin class I promoter from potato in transgenic Arabidopsis plants publication-title: Russ J Plant Physiol doi: 10.1134/S1021443707030090 – volume: 39 start-page: 35 year: 1999 end-page: 44 ident: CR43 article-title: Isolation and characterization of an anther-specific gene, RA8, from rice ( L.) publication-title: Plant Mol Biol doi: 10.1023/A:1006157603096 – volume: 46 start-page: 627 year: 2001 end-page: 637 ident: CR73 article-title: Sugar responsible elements in the promoter of a gene for b-amylase of sweet potato publication-title: Plant Mol Biol doi: 10.1023/A:1010684908364 – volume: 6 start-page: 26685 year: 2016 ident: CR88 article-title: Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants publication-title: Sci Rep doi: 10.1038/srep26685 – volume: 11 start-page: 46 year: 2018 ident: CR150 article-title: A transgene design for enhancing oil content in Arabidopsis and Camelina seeds publication-title: Biotechnol Biofuels doi: 10.1186/s13068-018-1049-4 – volume: 19 start-page: 3925 year: 2018 ident: CR27 article-title: A highly efficient cell division-specific CRISPR/Cas9 system generates homozygous mutants for multiple genes in Arabidopsis publication-title: Int J Mol Sci doi: 10.3390/ijms19123925 – volume: 7 start-page: 377 year: 2016 ident: CR57 article-title: Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system publication-title: Front Plant Sci doi: 10.3389/fpls.2016.00377 – volume: 35 start-page: 1555 issue: 7 year: 2016 end-page: 1558 ident: CR25 article-title: High efficiency of targeted mutagenesis in Arabidopsis via meiotic promoter-driven expression of Cas9 endonuclease publication-title: Plant Cell Rep doi: 10.1007/s00299-016-2000-4 – volume: 15 start-page: e0236943 issue: 7 year: 2020 ident: CR96 article-title: Characterization of a novel LmSAP gene promoter from : tissue specificity and environmental stress responsiveness publication-title: PLoS ONE doi: 10.1371/journal.pone.0236943 – volume: 21 start-page: 295 year: 2003 end-page: 302 ident: CR77 article-title: Chromosomal walking of flanking regions from short known sequences in GC-rich plant genomic DNA publication-title: Plant Mol Biol Rep doi: 10.1007/BF02772805 – volume: 10 start-page: 1173 year: 2019 ident: CR94 article-title: Bidirectional promoter based CRISPR-Cas9 systems for plant genome editing publication-title: Front Plant Sci doi: 10.3389/fpls.2019.01173 – volume: 7 start-page: 142 year: 2020 ident: CR26 article-title: Tomato fruit as a model for tissue-specific gene silencing in crop plants publication-title: Hortic Res doi: 10.1038/s41438-020-00363-4 – volume: 50 start-page: 371 year: 2002 end-page: 377 ident: CR100 article-title: A pistil-specific thaumatin/PR5-like protein gene of Japanese pear ( ): sequence and promoter activity of the 5′ region in transgenic tobacco publication-title: Plant Mol Biol doi: 10.1023/A:1019866029629 – volume: 54 start-page: 698 issue: 4 year: 2014 end-page: 710 ident: CR84 article-title: Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells publication-title: Mol Cell doi: 10.1016/j.molcel.2014.04.022 – volume: 31 start-page: 688 issue: 8 year: 2013 end-page: 691 ident: CR53 article-title: Multiplex and homologous recombination–mediated genome editing in Arabidopsis and using guide RNA and Cas9 publication-title: Nat Biotechnol doi: 10.1038/nbt.2654 – volume: 10 start-page: 1011 issue: 7 year: 2017 end-page: 1013 ident: CR126 article-title: Multiplex gene editing in rice using the CRISPR-Cpf1 system publication-title: Mol Plant doi: 10.1016/j.molp.2017.03.001 – volume: 39 start-page: 623 year: 2007 end-page: 630 ident: CR104 article-title: A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase publication-title: Nat Genet doi: 10.1038/ng2014 – volume: 6 start-page: 26912 year: 2016 ident: CR2 article-title: CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion publication-title: Sci Rep doi: 10.1038/srep26912 – volume: 513 start-page: 569 issue: 7519 year: 2014 end-page: 573 ident: CR4 article-title: Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease publication-title: Nature doi: 10.1038/nature13579 – volume: 59 start-page: 2417 issue: 9 year: 2008 end-page: 2424 ident: CR93 article-title: Expression pattern and activity of six glutelin gene promoters in transgenic rice publication-title: J Exp Bot doi: 10.1093/jxb/ern110 – volume: 234 start-page: 623 issue: 3 year: 2011 end-page: 637 ident: CR102 article-title: The sucrose synthase-1 promoter from directs expression of the β-glucuronidase reporter gene in phloem tissue and in response to wounding in transgenic plants publication-title: Planta doi: 10.1007/s00425-011-1432-x – volume: 41 start-page: 63 year: 2014 end-page: 68 ident: CR63 article-title: Targeted mutagenesis in using TALENs and the CRISPR/Cas system publication-title: J Genet Genom doi: 10.1016/j.jgg.2013.12.001 – volume: 115 start-page: E7834 issue: 33 year: 2018 end-page: E7843 ident: CR38 article-title: Plant pathogen effector utilizes host susceptibility factor NRL1 to degrade the immune regulator SWAP70 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1808585115 – volume: 7 start-page: 40641 year: 2017 ident: CR101 article-title: The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice publication-title: Sci Rep doi: 10.1038/srep46890 – volume: 77 start-page: 91 year: 2011 end-page: 103 ident: CR85 article-title: A dual role for MYB60 in stomatal regulation and root growth of under drought stress publication-title: Plant Mol Biol doi: 10.1007/s11103-011-9796-7 – volume: 38 start-page: 361 year: 2019 end-page: 376 ident: CR99 article-title: Systematic analysis of NAC transcription factors’ gene family and identification of post-flowering drought stress responsive members in sorghum publication-title: Plant Cell doi: 10.1007/s00299-019-02371-8 – volume: 1 year: 2020 ident: CR75 article-title: The ubiquitin E3 ligase PUB17 positively regulates immunity by targeting a negative regulator, KH17, for degradation publication-title: Plant Commun doi: 10.1016/j.xplc.2020.100020 – volume: 110 start-page: 15644 year: 2013 end-page: 15649 ident: CR41 article-title: Efficient genome engineering in human pluripotent stem cells using Cas9 from publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1313587110 – volume: 49 start-page: 413 issue: 4 year: 2011 end-page: 419 ident: CR31 article-title: Vascular-specific expression of GUS and GFP reporter genes in transgenic grapevine ( L. cv. Albariño) conferred by the EgCCR promoter of publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2011.02.005 – volume: 16 start-page: e0242949 issue: 3 year: 2021 ident: CR115 article-title: Cloning and functional characterization of seed-specific LEC1A promoter from peanut ( L.) publication-title: PLoS ONE doi: 10.1371/journal.pone.0242949 – volume: 30 start-page: 75 year: 2011 end-page: 80 ident: CR131 article-title: A seed coat outer integument-specific promoter for publication-title: Plant Cell Rep doi: 10.1007/s00299-010-0945-2 – volume: 3 start-page: 371 year: 1991 end-page: 382 ident: CR135 article-title: Characterization of cis-acting sequences regulating root-specific gene expression in tobacco publication-title: Plant Cell doi: 10.1105/tpc.3.4.371 – volume: 12 start-page: 1027 year: 2019 end-page: 1036 ident: CR147 article-title: Improving plant genome editing with high-fidelity xCas9 and non-canonical PAM-targeting Cas9-NG publication-title: Mol Plant doi: 10.1016/j.molp.2019.03.011 – volume: 19 start-page: 1667 issue: 6 year: 2018 ident: CR7 article-title: Design of a seed-specific chimeric promoter with a modified expression profile to improve seed oil content publication-title: Int J Mol Sci doi: 10.3390/ijms19061667 – volume: 31 start-page: 1159 year: 2012 end-page: 1172 ident: CR138 article-title: Two novel positive cis-regulatory elements involved in green tissue-specific promoter activity in rice ( L. ssp.) publication-title: Plant Cell Rep doi: 10.1007/s00299-012-1238-8 – volume: 8 start-page: 1820 issue: 12 year: 2015 end-page: 1823 ident: CR136 article-title: High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR Cas9 system publication-title: Mol Plant doi: 10.1016/j.molp.2015.10.004 – volume: 29 start-page: 651 year: 2010 end-page: 659 ident: CR8 article-title: Putative storage root specific promoters from cassava and yam: cloning and evaluation in transgenic carrots as a model system publication-title: Plant Cell Rep doi: 10.1007/s00299-010-08517 – volume: 8 start-page: 2094 year: 2017 ident: CR12 article-title: Inhibition of NHEJ repair by type II-A CRISPR-Cas systems in bacteria publication-title: Nat Commun doi: 10.1038/s41467-017-02350-1 – volume: 176 year: 2020 ident: CR141 article-title: The soybean F-box protein GmFBX176 regulates ABA-mediated responses to drought and salt stress publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2020.104056 – volume: 190 start-page: 501 year: 2012 end-page: 510 ident: CR50 article-title: Frameshift mutagenesis: the roles of primer-template misalignment and the nonhomologous end-joining pathway in publication-title: Genetics doi: 10.1534/genetics.111.134890 – volume: 32 start-page: 569 issue: 6 year: 2014 end-page: 576 ident: CR116 article-title: Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing publication-title: Nat Biotechnol doi: 10.1038/nbt.2908 – volume: 9 start-page: 1088 year: 2016 end-page: 1091 ident: CR111 article-title: Single transcript CRISPR-Cas9 system for efficient genome editing in plants publication-title: Mol Plant doi: 10.1016/j.molp.2016.05.001 – volume: 557 start-page: 163 issue: 2 year: 2015 end-page: 171 ident: CR67 article-title: Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis publication-title: Gene doi: 10.1016/j.gene.2014.12.029 – volume: 5 start-page: 10342 year: 2015 ident: CR107 article-title: Targeted mutagenesis in soybean using the CRISPR-Cas9 system publication-title: Sci Rep doi: 10.1038/srep10342 – volume: 44 start-page: 541 issue: 11 year: 2017 end-page: 548 ident: CR20 article-title: Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon publication-title: J Genet Genom doi: 10.1016/j.jgg.2017.09.010 – volume: 149 start-page: 96 year: 2020 end-page: 110 ident: CR129 article-title: Overexpressing the NAC transcription factor LpNAC13 from in tobacco negatively regulates the drought response and positively regulates the salt response publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2020.01.036 – volume: 36 start-page: 117 year: 2017 end-page: 128 ident: CR5 article-title: Efficient targeted multiallelic mutagenesis in tetraploid potato ( ) by transient CRISPR-Cas9 expression in protoplasts publication-title: Plant Cell Rep doi: 10.1007/s00299-016-2062-3 – volume: 30 start-page: 1426 year: 2012 end-page: 1432 ident: CR19 article-title: Characterization of a novel pollen-specific promoter from wheat ( L.) publication-title: Plant Mol Biol Rep doi: 10.1007/s11105-012-0458-y – volume: 299 year: 2020 ident: CR60 article-title: A wheat R2R3 MYB gene TaMpc1-D4 negatively regulates drought tolerance in transgenic Arabidopsis and wheat publication-title: Plant Sci doi: 10.1016/j.plantsci.2020.110613 – volume: 2 start-page: 239 year: 2010 end-page: 248 ident: CR142 article-title: Isolation and functional characterization of two novel seed-specific promoters from sunflower ( L.) publication-title: Plant Cell Rep doi: 10.1007/s00299-010-0816-x – volume: 292 start-page: 145 issue: 1 year: 2017 end-page: 156 ident: CR1 article-title: Fruit preferential activity of the tomato RIP1 gene promoter in transgenic tomato and Arabidopsis publication-title: Mol Genet Genom doi: 10.1007/s00438-016-1262-4 – volume: 51 start-page: 61 year: 1982 end-page: 87 ident: CR66 article-title: DNA repair enzymes publication-title: Annu Rev Biochem doi: 10.1146/annurev.bi.51.070182.000425 – volume: 33 start-page: 25 issue: 1 year: 1983 end-page: 35 ident: CR109 article-title: The double-strand-break repair model for recombination publication-title: Cell doi: 10.1016/0092-8674(83)90331-8 – volume: 290 year: 2020 ident: CR72 article-title: Histone deacetylase gene PtHDT902 modifies adventitious root formation and negatively regulates salt stress tolerance in poplar publication-title: Plant Sci doi: 10.1016/j.plantsci.2019.110301 – volume: 9 start-page: 1967 year: 2018 ident: CR79 article-title: CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation publication-title: Nat Commun doi: 10.1038/s41467-018-04416-0 – volume: 31 start-page: 2868 issue: 12 year: 2019 end-page: 2887 ident: CR22 article-title: CRISPR-TSKO: a technique for efficient mutagenesis in specific cell types, tissues, or organs in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.19.00454 – volume: 14 start-page: 397 issue: 4 year: 2020 end-page: 406 ident: CR140 article-title: A novel ethylene-responsive factor IbERF4 from sweetpotato negatively regulates abiotic stress publication-title: Plant Biotechnol Rep doi: 10.1007/s11816-020-00612-x – volume: 103 start-page: 235 issue: 3 year: 2020 end-page: 252 ident: CR48 article-title: Oryza sativa drought-, heat-, and salt-induced RING finger protein 1 ( ) negatively regulates abiotic stress-responsive gene expression publication-title: Plant Mol Biol doi: 10.1007/s11103-020-00989-x – volume: 35 start-page: 425 year: 1997 end-page: 431 ident: CR28 article-title: A promoter directing high level expression in pistils of transgenic plants publication-title: Plant Mol Biol doi: 10.1023/A:1005898624425 – volume: 19 start-page: 172 year: 2020 ident: CR69 article-title: Application of different types of CRISPR/Cas-based systems in bacteria publication-title: Microb Cell Fact doi: 10.1186/s12934-020-01431-z – volume: 4 start-page: 6 year: 2008 ident: CR137 article-title: Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool publication-title: Plant Methods doi: 10.1186/1746-4811-4-6 – volume: 315 start-page: 1709 year: 2007 end-page: 1712 ident: CR11 article-title: CRISPR provides acquired resistance against viruses in prokaryotes publication-title: Science doi: 10.1126/science.1138140 – volume: 546 start-page: 459 year: 2014 end-page: 472 ident: CR55 article-title: Cas9-based genome editing in Arabidopsis and tobacco publication-title: Methods Enzymol doi: 10.1016/B978-0-12-801185-0.00022-2 – volume: 29 start-page: 1196 year: 2017 end-page: 1217 ident: CR18 article-title: A multipurpose toolkit to enable advanced genome engineering in plants publication-title: Plant Cell doi: 10.1105/tpc.16.00922 – volume: 19 start-page: 584 year: 2019 ident: CR58 article-title: Genome-scale mining of root-preferential genes from maize and characterization of their promoter activity publication-title: BMC Plant Biol doi: 10.1186/s12870-019-2198-8 – volume: 62 start-page: 133 issue: 2 year: 2012 end-page: 141 ident: CR39 article-title: An atypical bHLH protein encoded by POSITIVE REGULATOR OF GRAIN LENGTH 2 is involved in controlling grain length and weight of rice through interaction with a typical bHLH protein APG publication-title: Breed Sci doi: 10.1270/jsbbs.62.133 – volume: 88 start-page: 561 year: 2015 end-page: 572 ident: CR78 article-title: Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice publication-title: Plant Mol Biol doi: 10.1007/s11103-015-0342-x – volume: 19 start-page: 607 issue: 3 year: 2018 end-page: 614 ident: CR146 article-title: The DnaJ protein OsDjA6 negatively regulates rice innate immunity to the blast fungus publication-title: Mol Plant Pathol doi: 10.1111/mpp.12546 – volume: 37 start-page: 187 year: 1998 end-page: 192 ident: CR119 article-title: A maize pectin methyl esterase-like gene, ZmC5, specifically expressed in pollen publication-title: Plant Mol Biol doi: 10.1023/a:1005954621558 – volume: 64 start-page: 3361 issue: 11 year: 2013 end-page: 3371 ident: CR95 article-title: The Arabidopsis thaliana MYB60 promoter provides a tool for the spatio-temporal control of gene expression in stomatal guard cells publication-title: J Exp Bot doi: 10.1093/jxb/ert180 – volume: 64 start-page: 13 issue: 1 year: 2021 end-page: 21 ident: CR52 article-title: Tissue-specific CRISPR/Cas9 system of cotton pollen with GhPLIMP2b and GhMYB24 promoters publication-title: J Plant Biol doi: 10.1007/s12374-020-09272-4 – volume: 11 start-page: 437 issue: 4 year: 2002 end-page: 445 ident: CR6 article-title: Cloning of the chrysanthemum UEP1 promoter and comparative expression in florets and leaves of publication-title: Transgenic Res doi: 10.1023/a:1016313924844 – volume: 220 start-page: 163 year: 2018 end-page: 177 ident: CR89 article-title: EMR, a cytosolic-abundant ring finger E3 ligase, mediates ER-associated protein degradation in Arabidopsis publication-title: New Phytol doi: 10.1111/nph.15279 – volume: 244 start-page: 333 year: 2018 end-page: 337 ident: CR3 article-title: Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in and Arabidopsis publication-title: Virus Res doi: 10.1016/j.virusres.2017.10.009 – volume: 156 start-page: 1577 issue: 3 year: 2011 end-page: 1588 ident: CR110 article-title: Enhanced seed oil production in canola by conditional expression of LEAFY COTYLEDON1 and LEC1-LIKEin developing seeds publication-title: Plant Physiol doi: 10.1104/pp.111.175000 – volume: 7 start-page: 41947 year: 2017 ident: CR40 article-title: Nucleosome positioning and NDR structure at RNA polymerase III promoters publication-title: Sci Rep doi: 10.1038/srep41947 – volume: 34 start-page: 53 issue: 1 year: 2012 end-page: 59 ident: CR65 article-title: Screening of tissue-specific genes and promoters in tomato by comparing genome wide expression profiles of Arabidopsis orthologues publication-title: Mol Cells doi: 10.1007/s10059-012-0068-4 – volume: 113 start-page: 462 issue: 1, Part 2 year: 2021 end-page: 474 ident: CR61 article-title: , a member of tubby-like proteins, interacts with GhSKP1A to negatively regulate plant osmotic stress publication-title: Genomics doi: 10.1016/j.ygeno.2020.09.024 – volume: 12 start-page: 1 issue: 1 year: 2019 end-page: 5 ident: CR64 article-title: A screening method to identify efficient sgRNAs in Arabidopsis, used in conjunction with cell-specific lignin reduction publication-title: Biotechnol Biofuels doi: 10.1186/s13068-019-1467-y – volume: 49 start-page: 171 year: 2002 end-page: 186 ident: CR14 article-title: Characterization of a tissue-specific and developmentally regulated b-1,3-glucanase gene in pea ( ) publication-title: Plant Mol Biol doi: 10.1023/A:1014910900312 – volume: 154 start-page: 927 issue: 2 year: 2010 end-page: 938 ident: CR30 article-title: Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator publication-title: Plant Physiol doi: 10.1104/pp.110.159517 – volume: 5 start-page: 18256 year: 2016 ident: CR125 article-title: Novel green tissue-specific synthetic promoters and cis-regulatory elements in rice publication-title: Sci Rep doi: 10.1038/srep18256 – volume: 369 start-page: 333 issue: 6501 year: 2020 end-page: 337 ident: CR90 article-title: CRISPR-CasΦ from huge phages is a hypercompact genome editor publication-title: Science doi: 10.1126/science.abb1400 – volume: 93 start-page: 5055 issue: 10 year: 1996 end-page: 5060 ident: CR92 article-title: Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.93.10.5055 – volume: 12 start-page: e0181963 issue: 7 year: 2017 ident: CR130 article-title: The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling-plant resistance to f. sp. publication-title: PLoS ONE doi: 10.1371/journal.pone.0181963 – volume: 41 start-page: 217 year: 1999 end-page: 231 ident: CR106 article-title: A novel promoter from soybean that is active in a complex developmental pattern with and without its proximal 650 base pairs publication-title: Plant Mol Biol doi: 10.1023/a:1006312228617 – volume: 3 start-page: 684 issue: 9 year: 2008 end-page: 686 ident: CR29 article-title: Gene trap-based identification of a guard cell promoter in Arabidopsis publication-title: Plant Signal Behav doi: 10.4161/psb.3.9.5820 – volume: 87 start-page: 20130685 issue: 1035 year: 2014 ident: CR45 article-title: DNA DSB repair pathway choice: an orchestrated handover mechanism publication-title: Br J Radiol doi: 10.1259/bjr.20130685 – volume: 19 start-page: 2009 issue: 7 year: 2018 ident: CR134 article-title: Isolation and characterization of a green-tissue promoter from common wild rice ( Griff.) publication-title: Int J Mol Sci doi: 10.3390/ijms19072009 – volume: 30 start-page: 997 year: 2011 end-page: 1006 ident: CR82 article-title: Characterization of the mannan synthase promoter from guar ( ) publication-title: Plant Cell Rep doi: 10.1007/s00299-011-1003-4 – volume: 3 start-page: 17018 year: 2017 ident: CR112 article-title: A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants publication-title: Nat Plants doi: 10.1038/nplants.2017.18 – volume: 20 start-page: 4702 issue: 19 year: 2019 ident: CR127 article-title: CRISPR/Cas9-based mutagenesis of starch biosynthetic genes in sweet potato ( ) for the improvement of starch quality publication-title: Int J Mol Sci doi: 10.3390/ijms20194702 – volume: 217 start-page: 240 year: 1989 end-page: 245 ident: CR117 article-title: Isolation and expression of an anther-specific gene from tomato publication-title: Mol Gen Genet doi: 10.1007/BF02464887 – volume: 14 start-page: 519 issue: 2 year: 2015 end-page: 532 ident: CR74 article-title: Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis publication-title: Plant Biotechnol J doi: 10.1111/pbi.12468 – volume: 368 start-page: 290 issue: 6488 year: 2020 end-page: 296 ident: CR120 article-title: Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants publication-title: Science doi: 10.1126/science.aba8853 – volume: 8 start-page: 2049 year: 2017 ident: CR46 article-title: Identification validation and utilization of novel nematode-responsive root-specific promoters in Arabidopsis for inducing host delivered RNAi mediated root-knot nematode resistance publication-title: Front Plant Sci doi: 10.3389/fpls.2017.02049 – volume: 40 start-page: 1370 year: 2008 end-page: 1374 ident: CR122 article-title: Control of rice grain-filling and yield by a gene with a potential signature of domestication publication-title: Nat Genet doi: 10.1038/ng.220 – volume: 67 start-page: 4403 year: 2016 end-page: 4413 ident: CR68 article-title: The intergenic region of the maize defensin-like protein genes Def1 and Def2 functions as an embryo-specific asymmetric bidirectional promoter publication-title: J Exp Bot doi: 10.1093/jxb/erw226 – volume: 11 year: 2020 ident: CR149 article-title: Targeted transgene expression in rice using a callus strong promoter for selectable marker gene control publication-title: Front Plant Sci doi: 10.3389/fpls.2020.602680 – volume: 32 start-page: 947 year: 2014 end-page: 951 ident: CR123 article-title: Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew publication-title: Nat Biotechnol doi: 10.1038/nbt.2969 – volume: 163 start-page: 759 issue: 3 year: 2015 end-page: 771 ident: CR143 article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cass system publication-title: Cell doi: 10.1016/j.cell.2015.09.038 – volume: 132 start-page: 551 year: 2007 end-page: 556 ident: CR103 article-title: Expression of a rice chlorophyll / binding protein promoter in sweet potato publication-title: J Am Soc Hortic Sci doi: 10.21273/JASHS.132.4.551 – volume: 5 start-page: 273 year: 2014 ident: CR139 article-title: Reconstruction of gene regulatory network related to photosynthesis in Arabidopsis thaliana publication-title: Front Plant Sci doi: 10.3389/fpls.2014.00273 – volume: 63 start-page: 1054 year: 2010 end-page: 1062 ident: CR76 article-title: AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04302.x2.x – volume: 169 start-page: 931 year: 2015 end-page: 945 ident: CR108 article-title: Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA publication-title: Plant Physiol doi: 10.1104/pp.15.00793 – volume: 32 start-page: 234 year: 2014 ident: 3811_CR23 publication-title: Plant Mol Biol Rep doi: 10.1007/s11105-013-0646-4 – volume: 49 start-page: 413 issue: 4 year: 2011 ident: 3811_CR31 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2011.02.005 – volume: 26 start-page: 1995 year: 1994 ident: 3811_CR17 publication-title: Plant Mol Biol doi: 10.1007/BF00019510 – volume: 11 year: 2020 ident: 3811_CR149 publication-title: Front Plant Sci doi: 10.3389/fpls.2020.602680 – volume: 6 start-page: 26685 year: 2016 ident: 3811_CR88 publication-title: Sci Rep doi: 10.1038/srep26685 – volume: 93 start-page: 5055 issue: 10 year: 1996 ident: 3811_CR92 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.93.10.5055 – volume: 63 start-page: 1054 year: 2010 ident: 3811_CR76 publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04302.x2.x – volume: 176 year: 2020 ident: 3811_CR141 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2020.104056 – volume: 369 start-page: 333 issue: 6501 year: 2020 ident: 3811_CR90 publication-title: Science doi: 10.1126/science.abb1400 – volume: 7 start-page: 377 year: 2016 ident: 3811_CR57 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.00377 – volume: 234 start-page: 623 issue: 3 year: 2011 ident: 3811_CR102 publication-title: Planta doi: 10.1007/s00425-011-1432-x – volume: 2 start-page: 2910 year: 2007 ident: 3811_CR86 publication-title: Nat Protoc doi: 10.1038/nprot.2007.425 – volume: 5 start-page: 1 issue: 1 year: 2020 ident: 3811_CR59 publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-019-0089-y – volume: 244 start-page: 333 year: 2018 ident: 3811_CR3 publication-title: Virus Res doi: 10.1016/j.virusres.2017.10.009 – volume: 35 start-page: 425 year: 1997 ident: 3811_CR28 publication-title: Plant Mol Biol doi: 10.1023/A:1005898624425 – volume: 49 start-page: 171 year: 2002 ident: 3811_CR14 publication-title: Plant Mol Biol doi: 10.1023/A:1014910900312 – volume: 353 start-page: 6299 year: 2016 ident: 3811_CR80 publication-title: Science doi: 10.1126/science.aad5147 – volume: 11 start-page: 46 year: 2018 ident: 3811_CR150 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-018-1049-4 – volume: 77 start-page: 91 year: 2011 ident: 3811_CR85 publication-title: Plant Mol Biol doi: 10.1007/s11103-011-9796-7 – volume: 3 start-page: 684 issue: 9 year: 2008 ident: 3811_CR29 publication-title: Plant Signal Behav doi: 10.4161/psb.3.9.5820 – volume: 112 start-page: 3570 issue: 11 year: 2015 ident: 3811_CR132 publication-title: PNAS doi: 10.1073/pnas.1420294112 – volume: 110 start-page: 15644 year: 2013 ident: 3811_CR41 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1313587110 – volume: 190 start-page: 501 year: 2012 ident: 3811_CR50 publication-title: Genetics doi: 10.1534/genetics.111.134890 – volume: 8 start-page: 1820 issue: 12 year: 2015 ident: 3811_CR136 publication-title: Mol Plant doi: 10.1016/j.molp.2015.10.004 – volume: 64 start-page: 13 issue: 1 year: 2021 ident: 3811_CR52 publication-title: J Plant Biol doi: 10.1007/s12374-020-09272-4 – volume: 9 start-page: 260 year: 2018 ident: 3811_CR113 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00260 – volume: 13 start-page: 29 year: 2013 ident: 3811_CR148 publication-title: BMC Biotechnol doi: 10.1186/1472-6750-13-29 – volume: 7 start-page: 137 year: 2020 ident: 3811_CR51 publication-title: Hortic Res doi: 10.1038/s41438-020-00355-4 – volume: 41 issue: 20 year: 2013 ident: 3811_CR44 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt780 – volume: 17 start-page: 282 issue: 3 year: 1999 ident: 3811_CR34 publication-title: Nat Biotechnol doi: 10.1038/7029 – volume: 9 start-page: 1967 year: 2018 ident: 3811_CR79 publication-title: Nat Commun doi: 10.1038/s41467-018-04416-0 – volume: 7 start-page: 142 year: 2020 ident: 3811_CR26 publication-title: Hortic Res doi: 10.1038/s41438-020-00363-4 – volume: 8 start-page: 2094 year: 2017 ident: 3811_CR12 publication-title: Nat Commun doi: 10.1038/s41467-017-02350-1 – volume: 103 start-page: 235 issue: 3 year: 2020 ident: 3811_CR48 publication-title: Plant Mol Biol doi: 10.1007/s11103-020-00989-x – volume: 169 start-page: 971 issue: 2 year: 2015 ident: 3811_CR71 publication-title: Plant Physiol doi: 10.1104/pp.15.00636 – volume: 32 start-page: 569 issue: 6 year: 2014 ident: 3811_CR116 publication-title: Nat Biotechnol doi: 10.1038/nbt.2908 – volume: 549 start-page: 548 issue: 7673 year: 2017 ident: 3811_CR9 publication-title: Nature doi: 10.1038/nature24023 – volume: 30 start-page: 997 year: 2011 ident: 3811_CR82 publication-title: Plant Cell Rep doi: 10.1007/s00299-011-1003-4 – volume: 9 issue: 3 year: 2013 ident: 3811_CR105 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003352 – volume: 144 start-page: 768 issue: 2 year: 2007 ident: 3811_CR15 publication-title: Plant Physiol doi: 10.1104/pp.107.096966 – volume: 32 start-page: 947 year: 2014 ident: 3811_CR123 publication-title: Nat Biotechnol doi: 10.1038/nbt.2969 – volume: 19 start-page: 3925 year: 2018 ident: 3811_CR27 publication-title: Int J Mol Sci doi: 10.3390/ijms19123925 – volume: 11 start-page: 162 year: 2011 ident: 3811_CR21 publication-title: BMC Plant Biol doi: 10.1186/1471-2229-11-162 – volume: 2 start-page: e00403-17 issue: 6 year: 2017 ident: 3811_CR35 publication-title: mSphere doi: 10.1128/mSphere.00403-17 – volume: 41 start-page: 63 year: 2014 ident: 3811_CR63 publication-title: J Genet Genom doi: 10.1016/j.jgg.2013.12.001 – volume: 62 start-page: 133 issue: 2 year: 2012 ident: 3811_CR39 publication-title: Breed Sci doi: 10.1270/jsbbs.62.133 – volume: 8 start-page: 265 issue: 3 year: 2017 ident: 3811_CR81 publication-title: Bioengineered doi: 10.1080/21655979.2017.1282018 – volume: 17 start-page: 1431 issue: 7 year: 2019 ident: 3811_CR114 publication-title: Plant Biotechnol J doi: 10.1111/pbi.13068 – volume: 5 start-page: 273 year: 2014 ident: 3811_CR139 publication-title: Front Plant Sci doi: 10.3389/fpls.2014.00273 – volume: 19 start-page: 172 year: 2020 ident: 3811_CR69 publication-title: Microb Cell Fact doi: 10.1186/s12934-020-01431-z – volume: 30 start-page: 75 year: 2011 ident: 3811_CR131 publication-title: Plant Cell Rep doi: 10.1007/s00299-010-0945-2 – volume: 10 start-page: 1011 issue: 7 year: 2017 ident: 3811_CR126 publication-title: Mol Plant doi: 10.1016/j.molp.2017.03.001 – volume: 12 start-page: 1 issue: 1 year: 2019 ident: 3811_CR64 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-019-1467-y – volume: 234 start-page: 112 year: 1997 ident: 3811_CR121 publication-title: Virology doi: 10.1006/viro.1997.8637 – volume: 19 start-page: 1667 issue: 6 year: 2018 ident: 3811_CR7 publication-title: Int J Mol Sci doi: 10.3390/ijms19061667 – volume: 4 start-page: 6 year: 2008 ident: 3811_CR137 publication-title: Plant Methods doi: 10.1186/1746-4811-4-6 – volume: 315 start-page: 1709 year: 2007 ident: 3811_CR11 publication-title: Science doi: 10.1126/science.1138140 – volume: 9 start-page: 1088 year: 2016 ident: 3811_CR111 publication-title: Mol Plant doi: 10.1016/j.molp.2016.05.001 – volume: 59 start-page: 2417 issue: 9 year: 2008 ident: 3811_CR93 publication-title: J Exp Bot doi: 10.1093/jxb/ern110 – volume: 557 start-page: 163 issue: 2 year: 2015 ident: 3811_CR67 publication-title: Gene doi: 10.1016/j.gene.2014.12.029 – volume: 12 start-page: e0181963 issue: 7 year: 2017 ident: 3811_CR130 publication-title: PLoS ONE doi: 10.1371/journal.pone.0181963 – volume: 35 start-page: 1555 issue: 7 year: 2016 ident: 3811_CR25 publication-title: Plant Cell Rep doi: 10.1007/s00299-016-2000-4 – volume: 16 start-page: 144 issue: 1 year: 2015 ident: 3811_CR124 publication-title: Genome Biol doi: 10.1186/s13059-015-0715-0 – volume: 30 start-page: 1426 year: 2012 ident: 3811_CR19 publication-title: Plant Mol Biol Rep doi: 10.1007/s11105-012-0458-y – volume: 241 start-page: 271 issue: 1 year: 2015 ident: 3811_CR42 publication-title: Planta doi: 10.1007/s00425-014-2180-5 – volume: 7 start-page: 2039 year: 1995 ident: 3811_CR16 publication-title: Plant Cell doi: 10.1105/tpc.7.12.2039 – volume: 149 start-page: 96 year: 2020 ident: 3811_CR129 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2020.01.036 – volume: 54 start-page: 698 issue: 4 year: 2014 ident: 3811_CR84 publication-title: Mol Cell doi: 10.1016/j.molcel.2014.04.022 – volume: 6 start-page: 26912 year: 2016 ident: 3811_CR2 publication-title: Sci Rep doi: 10.1038/srep26912 – volume: 8 start-page: 2049 year: 2017 ident: 3811_CR46 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.02049 – volume: 11 year: 2020 ident: 3811_CR10 publication-title: Front Plant Sci doi: 10.3389/fpls.2020.584151 – volume: 207 start-page: 37 year: 2013 ident: 3811_CR54 publication-title: Plant Sci doi: 10.1016/j.plantsci.2013.02.002 – volume: 513 start-page: 569 issue: 7519 year: 2014 ident: 3811_CR4 publication-title: Nature doi: 10.1038/nature13579 – volume: 6 start-page: 766 issue: 7 year: 2020 ident: 3811_CR128 publication-title: Nat Plants doi: 10.1038/s41477-020-0695-2 – volume: 29 start-page: 651 year: 2010 ident: 3811_CR8 publication-title: Plant Cell Rep doi: 10.1007/s00299-010-08517 – volume: 113 start-page: 462 issue: 1, Part 2 year: 2021 ident: 3811_CR61 publication-title: Genomics doi: 10.1016/j.ygeno.2020.09.024 – volume: 10 start-page: 1173 year: 2019 ident: 3811_CR94 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.01173 – volume: 40 start-page: 1370 year: 2008 ident: 3811_CR122 publication-title: Nat Genet doi: 10.1038/ng.220 – volume: 290 year: 2020 ident: 3811_CR72 publication-title: Plant Sci doi: 10.1016/j.plantsci.2019.110301 – volume: 50 start-page: 371 year: 2002 ident: 3811_CR100 publication-title: Plant Mol Biol doi: 10.1023/A:1019866029629 – volume: 95 start-page: 5172 year: 1998 ident: 3811_CR62 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.9.5172 – volume: 41 start-page: 217 year: 1999 ident: 3811_CR106 publication-title: Plant Mol Biol doi: 10.1023/a:1006312228617 – volume: 19 start-page: 2009 issue: 7 year: 2018 ident: 3811_CR134 publication-title: Int J Mol Sci doi: 10.3390/ijms19072009 – volume: 44 start-page: 541 issue: 11 year: 2017 ident: 3811_CR20 publication-title: J Genet Genom doi: 10.1016/j.jgg.2017.09.010 – volume: 37 start-page: 187 year: 1998 ident: 3811_CR119 publication-title: Plant Mol Biol doi: 10.1023/a:1005954621558 – volume: 39 start-page: 35 year: 1999 ident: 3811_CR43 publication-title: Plant Mol Biol doi: 10.1023/A:1006157603096 – volume: 7 start-page: 40641 year: 2017 ident: 3811_CR101 publication-title: Sci Rep doi: 10.1038/srep46890 – volume: 218 start-page: 192 year: 2003 ident: 3811_CR144 publication-title: Planta doi: 10.1007/s00425-003-1098-0 – volume: 38 start-page: 361 year: 2019 ident: 3811_CR99 publication-title: Plant Cell doi: 10.1007/s00299-019-02371-8 – volume: 1 year: 2020 ident: 3811_CR75 publication-title: Plant Commun doi: 10.1016/j.xplc.2020.100020 – volume: 12 start-page: 118 issue: 3 year: 2007 ident: 3811_CR118 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2007.01.002 – volume: 36 start-page: 117 year: 2017 ident: 3811_CR5 publication-title: Plant Cell Rep doi: 10.1007/s00299-016-2062-3 – volume: 14 start-page: 519 issue: 2 year: 2015 ident: 3811_CR74 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12468 – volume: 87 start-page: 20130685 issue: 1035 year: 2014 ident: 3811_CR45 publication-title: Br J Radiol doi: 10.1259/bjr.20130685 – volume: 12 start-page: 1027 year: 2019 ident: 3811_CR147 publication-title: Mol Plant doi: 10.1016/j.molp.2019.03.011 – volume: 34 start-page: 53 issue: 1 year: 2012 ident: 3811_CR65 publication-title: Mol Cells doi: 10.1007/s10059-012-0068-4 – volume: 132 start-page: 551 year: 2007 ident: 3811_CR103 publication-title: J Am Soc Hortic Sci doi: 10.21273/JASHS.132.4.551 – volume: 179 start-page: 549 year: 2010 ident: 3811_CR24 publication-title: Plant Sci doi: 10.1016/j.plantsci.2010.07.016 – volume: 7 start-page: 41947 year: 2017 ident: 3811_CR40 publication-title: Sci Rep doi: 10.1038/srep41947 – volume: 31 start-page: 1159 year: 2012 ident: 3811_CR138 publication-title: Plant Cell Rep doi: 10.1007/s00299-012-1238-8 – volume: 29 start-page: 1196 year: 2017 ident: 3811_CR18 publication-title: Plant Cell doi: 10.1105/tpc.16.00922 – volume: 67 start-page: 4403 year: 2016 ident: 3811_CR68 publication-title: J Exp Bot doi: 10.1093/jxb/erw226 – volume: 13 start-page: 10 issue: 4 year: 2018 ident: 3811_CR133 publication-title: Biotechnol J doi: 10.1002/biot.201700561 – volume: 31 start-page: 688 issue: 8 year: 2013 ident: 3811_CR53 publication-title: Nat Biotechnol doi: 10.1038/nbt.2654 – volume: 169 start-page: 931 year: 2015 ident: 3811_CR108 publication-title: Plant Physiol doi: 10.1104/pp.15.00793 – volume: 9 start-page: 3651 issue: 1 year: 2018 ident: 3811_CR13 publication-title: Nat Commun doi: 10.1038/s41467-018-06129-w – volume: 176 year: 2020 ident: 3811_CR37 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbott.2020.104087 – volume: 31 start-page: 2868 issue: 12 year: 2019 ident: 3811_CR22 publication-title: Plant Cell doi: 10.1105/tpc.19.00454 – volume: 115 start-page: E7834 issue: 33 year: 2018 ident: 3811_CR38 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1808585115 – volume: 7 start-page: 962 issue: 4 year: 2018 ident: 3811_CR91 publication-title: ACS Synth Biol doi: 10.1021/acssynbio.7b00362 – volume: 368 start-page: 290 issue: 6488 year: 2020 ident: 3811_CR120 publication-title: Science doi: 10.1126/science.aba8853 – volume: 16 start-page: e0242949 issue: 3 year: 2021 ident: 3811_CR115 publication-title: PLoS ONE doi: 10.1371/journal.pone.0242949 – volume: 163 start-page: 759 issue: 3 year: 2015 ident: 3811_CR143 publication-title: Cell doi: 10.1016/j.cell.2015.09.038 – volume: 3 start-page: 371 year: 1991 ident: 3811_CR135 publication-title: Plant Cell doi: 10.1105/tpc.3.4.371 – volume: 14 start-page: 397 issue: 4 year: 2020 ident: 3811_CR140 publication-title: Plant Biotechnol Rep doi: 10.1007/s11816-020-00612-x – volume: 15 start-page: e0236943 issue: 7 year: 2020 ident: 3811_CR96 publication-title: PLoS ONE doi: 10.1371/journal.pone.0236943 – volume: 156 start-page: 1577 issue: 3 year: 2011 ident: 3811_CR110 publication-title: Plant Physiol doi: 10.1104/pp.111.175000 – volume: 292 start-page: 145 issue: 1 year: 2017 ident: 3811_CR1 publication-title: Mol Genet Genom doi: 10.1007/s00438-016-1262-4 – volume: 154 start-page: 927 issue: 2 year: 2010 ident: 3811_CR30 publication-title: Plant Physiol doi: 10.1104/pp.110.159517 – volume: 299 year: 2020 ident: 3811_CR60 publication-title: Plant Sci doi: 10.1016/j.plantsci.2020.110613 – volume: 11 start-page: 437 issue: 4 year: 2002 ident: 3811_CR6 publication-title: Transgenic Res doi: 10.1023/a:1016313924844 – volume: 56 start-page: 343 issue: 4 year: 2014 ident: 3811_CR32 publication-title: J Integr Plant Biol doi: 10.1111/jipb.12152 – volume: 220 start-page: 163 year: 2018 ident: 3811_CR89 publication-title: New Phytol doi: 10.1111/nph.15279 – volume: 19 start-page: 584 year: 2019 ident: 3811_CR58 publication-title: BMC Plant Biol doi: 10.1186/s12870-019-2198-8 – volume: 1691 start-page: 290 year: 2012 ident: 3811_CR97 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2012.05.001 – volume: 2 start-page: 239 year: 2010 ident: 3811_CR142 publication-title: Plant Cell Rep doi: 10.1007/s00299-010-0816-x – volume: 2 start-page: 1201 year: 1990 ident: 3811_CR49 publication-title: Plant Cell doi: 10.1105/tpc.2.12.1201 – volume: 7 start-page: 967 year: 2016 ident: 3811_CR56 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.00967 – volume: 33 start-page: 25 issue: 1 year: 1983 ident: 3811_CR109 publication-title: Cell doi: 10.1016/0092-8674(83)90331-8 – volume: 46 start-page: 627 year: 2001 ident: 3811_CR73 publication-title: Plant Mol Biol doi: 10.1023/A:1010684908364 – volume: 88 start-page: 561 year: 2015 ident: 3811_CR78 publication-title: Plant Mol Biol doi: 10.1007/s11103-015-0342-x – volume: 16 start-page: 504 issue: 4 year: 2019 ident: 3811_CR33 publication-title: RNA Biol doi: 10.1080/15476286.2018.1504546 – volume: 9 start-page: 36 year: 2019 ident: 3811_CR98 publication-title: Cell Biosci doi: 10.1186/s13578-019-0298-7 – volume: 51 start-page: 61 year: 1982 ident: 3811_CR66 publication-title: Annu Rev Biochem doi: 10.1146/annurev.bi.51.070182.000425 – volume: 14 start-page: 40 year: 2018 ident: 3811_CR36 publication-title: Plant Methods doi: 10.1186/s13007-018-0305-8 – volume: 296 start-page: 179 issue: 1 year: 2021 ident: 3811_CR70 publication-title: Mol Genet Genom doi: 10.1007/s00438-020-01738-x – volume: 64 start-page: 3361 issue: 11 year: 2013 ident: 3811_CR95 publication-title: J Exp Bot doi: 10.1093/jxb/ert180 – volume: 5 start-page: 18256 year: 2016 ident: 3811_CR125 publication-title: Sci Rep doi: 10.1038/srep18256 – volume: 5 start-page: 10342 year: 2015 ident: 3811_CR107 publication-title: Sci Rep doi: 10.1038/srep10342 – volume: 3 start-page: 17018 year: 2017 ident: 3811_CR112 publication-title: Nat Plants doi: 10.1038/nplants.2017.18 – volume: 546 start-page: 459 year: 2014 ident: 3811_CR55 publication-title: Methods Enzymol doi: 10.1016/B978-0-12-801185-0.00022-2 – volume: 19 start-page: 607 issue: 3 year: 2018 ident: 3811_CR146 publication-title: Mol Plant Pathol doi: 10.1111/mpp.12546 – volume: 217 start-page: 240 year: 1989 ident: 3811_CR117 publication-title: Mol Gen Genet doi: 10.1007/BF02464887 – volume: 21 start-page: 295 year: 2003 ident: 3811_CR77 publication-title: Plant Mol Biol Rep doi: 10.1007/BF02772805 – volume: 28 start-page: 1309 issue: 9 year: 2009 ident: 3811_CR87 publication-title: Plant Cell Rep doi: 10.1007/s00299-009-0707-1 – volume: 169 start-page: 2935 issue: 4 year: 2015 ident: 3811_CR47 publication-title: Plant Physiol doi: 10.1104/pp.15.01192 – volume: 29 start-page: 207 year: 2021 ident: 3811_CR145 publication-title: J Adv Res doi: 10.1016/j.jare.2020.10.003 – volume: 39 start-page: 623 year: 2007 ident: 3811_CR104 publication-title: Nat Genet doi: 10.1038/ng2014 – volume: 20 start-page: 4702 issue: 19 year: 2019 ident: 3811_CR127 publication-title: Int J Mol Sci doi: 10.3390/ijms20194702 – volume: 54 start-page: 350 year: 2007 ident: 3811_CR83 publication-title: Russ J Plant Physiol doi: 10.1134/S1021443707030090 |
| SSID | ssj0014377 |
| Score | 2.469518 |
| SecondaryResourceType | review_article |
| Snippet | Main conclusion
In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle... In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with... Main conclusionIn a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle... MAIN CONCLUSION: In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 28 |
| SubjectTerms | Agriculture Arabidopsis Biomedical and Life Sciences Cotton CRISPR CRISPR-Cas Systems - genetics CRISPR/Cas-mediated gene editing to ensure product quality and plant performance Crop improvement Crops Ecology Forestry Gene Editing Genes genetic improvement Genome editing Genome, Plant - genetics Genomes Life Sciences Plant Breeding Plant Sciences Plants, Genetically Modified - genetics Promoters Review Tissues Tomatoes |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6VwIELLa82LVSLxK2s8GO9jnupStQovaAIcsjN8r4kJHBCHkj8e2bWG6MKNRcuuWQdj_TN7kx2vvkG4NwoF1kjiOfnLBeF7PFK5YbLnrOZULESSvthE_n1dW8yKUbhwm0RaJXrM9Ef1Gaq6Y78EjN9UWB4iZNfs0dOU6OouhpGaGzBNqkkJJ66N2qrCCLNG83MNOFU8AtNM751znsrJ4IC1crw89_A9CbbfFMp9QFo8PG9pn-CvZB6st-Nr-zDB1sfwM7VFNPD50N4HFZzOvbw3Wzp0eDUhUlMIkZCrg-WYZwjkjS7q9nsnvgzLEz5Yf2bv7ejm8t-tWCNNPRPphvhJ-Y7llhVG9bIlzA03rd3Lo5gPPgz7g95mMfAtYh6S64cAohRL1JRqgrMY0yknZLWaJGmWVy5rDBSOuPyTEgjKuMS56g5tzK5kSo9hk49re0XYEoKTUIxMVU1XSRJ1dAKojtmWjiVdyFeY1HqoFVOIzPuy1Zl2eNXIn6lx6-MuvCjfWbWKHVsXH2yxqoMu3ZRvgLVhbP2a9xvVESpajtd-TUZSXAVYtOaFP_WYRjB13xu3Kc1iQT68TfiLlys_enVgP_b-3Wzvd9gN6G-DH83dAKd5XxlT2FHP6HDzL_7XfECVO4Rcw priority: 102 providerName: ProQuest |
| Title | Harnessing tissue-specific genome editing in plants through CRISPR/Cas system: current state and future prospects |
| URI | https://link.springer.com/article/10.1007/s00425-021-03811-0 https://www.ncbi.nlm.nih.gov/pubmed/34962611 https://www.proquest.com/docview/2614938112 https://www.proquest.com/docview/2615109394 https://www.proquest.com/docview/2636429110 |
| Volume | 255 |
| WOSCitedRecordID | wos000736152400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-2048 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014377 issn: 0032-0935 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED_Wx8r2YY_slbULGuzbJmbHsmTvWxtSOsZCSMvIN2O9xqBz2iQd9L_vnfwoo2uh-yJsJEuHdNKdfHe_A_hgtY-cFeTn5x0Xucx4qZXlMvMuFTrWQpuQbEJNJtl8nk-boLBV6-3emiTDSd0FuwX-4uRSQNYtLDdgC8VdRgkbZsc_OtuBSFSNlJkMOZn5mlCZf_fxtzi6oWPesI8GsXP49P8IfgZPGjWT7dd88RweuKoHj_d_LhuoDdeD7YMFKoaXPXg4DsjV-LRDiTop-9sLOD8ql3QK4oBsHRaHU1AmORYxwnX97RiKPfKZZr8qdnZK7jSsSfrDRrOvx9PZ51G5YjVS9BdmahwoFgKYWFlZVqOZMJyMEO25egknh-OT0RFv0jNwI6JszbXH9UQhGOko0TmqNTYyXktnjUiSNC59mlspvfUqFdKK0vqh9xSrW1plpU5ewWa1qNwbYFoKQ7gxMRk5fSQJ5NAJ8n5MjfBa9SFuF6kwDXQ5ZdA4LTrQ5TDXBc51Eea6iPrwsfvmrAbuuLP1Xrv2RbOJVwVeLkVO9cM-vO-qcfuRTaWs3OIitEkJkSsXd7VJ8JaHUgWHeV3zVUcS4fVjH3EfPrVMdE3A7fS-vV_zXXg0pLCN8OtoDzbXywv3DrbNH2Sg5QA21FyFMhvA1sF4Mp3h2_foG5VqOgjb6wog8xeb |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VUoleeBcCBRYJTrDq2l7bMRJCEKgSpY2qkkNvK-9LQmqdNElB_VH8R2bWjwpV5NYDF1-8tsf2tzOzOzPfALyx2gtnJeX5ecdlkfV5qXPLs753qdSRltqEZhP5ZNI_OSmONuB3WwtDaZWtTgyK2s4M7ZHvoacvCzQvUfxpfs6paxRFV9sWGjUsxu7yFy7Zlh9HX_H_vo3j_W_TwZA3XQW4kaK_4tqjGKi7hRaJLtAaW2G8zpw1MknSqPRpYbPMW5-nMrOytD72nkpMS5vbTCd421twW0qRUAbhoRh3QQuZ5DVFZxJzii82NTqhUi9MDk75EBSaw-PfdvCac3stMBvs3f69_-xL3Ye7jWPNPtcz4QFsuOohbH2ZofN7-QjOh-WClDq-KlsFrHGqMaU8KUY0tWeOoRWnFHD2o2LzU8oOYk0PIzY4Hn0_Ot4blEtWE19_YKamtWKhHouVlWU1OQvDbxWKV5ePYXoTb7sDm9Wsck-B6UwaosGJKGbrRUacjU5SMmdqpNd5D6L21yvTMLFTQ5BT1XFIB7gohIsKcFGiB--6a-Y1D8na0bstNFSjk5bqChc9eN2dRm1CIaKycrOLMCYlgrFCrhuT4KIVjSQ-5kmN1k4kaj-A94h68L6F75UA_5b32Xp5X8Gd4fTwQB2MJuPnsB1TBUrYBduFzdXiwr2ALfMTwbN4GSYkA3XDsP4DpWVwKg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VtEK98KYNFFgkOMEqfqzXMRJCNG3UqCiKQg-9Wd6XhNQ6aZKC-tP67zqzflSoIrceuPjitT27_nZm7Jn5BuCDUS6wRlCen7NcZLLPC5UaLvvOJkKFSijtm02k43H_9DSbbMB1UwtDaZWNTvSK2sw0_SPvoacvMjQvYdRzdVrE5GD4bX7BqYMURVqbdhoVRI7t1R_8fFt-HR3gu_4YRcPDk8ERrzsMcC2C_oorhyKhHg9UEKsMLbMJtFPSGi3iOAkLl2RGSmdcmghpRGFc5ByVmxYmNVLFeNsHsJmijyE6sLl_OJ5M2xCGiNOKsDOOOEUb64odX7fntwqn7AgK1OHxb6t4x9W9E6b11m_4-D9etyfwqHa52fdqjzyFDVs-g639GbrFV8_h4qhYkLrHabOVRyGn6lPKoGJEYHtuGdp3Sg5nv0o2P6O8IVZ3N2KD6ejnZNobFEtWUWJ_YboivGK-UosVpWEVbQvDdfNlrcsXcHIfs30JnXJW2l1gSgpNBDkhRXNdIInN0QpK80y0cCrtQtjAINc1Rzu1CjnLW3ZpD50coZN76ORBFz6118wrhpK1o_camOS1tlrmtxjpwvv2NOoZCh4VpZ1d-jEJUY9lYt2YGD9n0XziY3Yq5LYiUWMCvEfYhc8NlG8F-Le8r9bL-w4eIprzH6Px8WvYjqg0xf8e24POanFp38CW_o3YWbytdyeD_J5xfQNXR3pT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+tissue-specific+genome+editing+in+plants+through+CRISPR%2FCas+system%3A+current+state+and+future+prospects&rft.jtitle=Planta&rft.au=Singha%2C+Dhanawantari+L.&rft.au=Das%2C+Debajit&rft.au=Sarki%2C+Yogita+N.&rft.au=Chowdhury%2C+Naimisha&rft.date=2022-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0032-0935&rft.eissn=1432-2048&rft.volume=255&rft.issue=1&rft_id=info:doi/10.1007%2Fs00425-021-03811-0&rft.externalDocID=10_1007_s00425_021_03811_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0935&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0935&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0935&client=summon |