Stacked Sparse Autoencoder-Based Deep Network for Fault Diagnosis of Rotating Machinery

As a breakthrough in the field of machine fault diagnosis, deep learning has great potential to extract more abstract and discriminative features automatically without much prior knowledge compared with other methods, such as the signal processing and analysis-based methods and machine learning meth...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 5; s. 15066 - 15079
Hlavní autori: Qi, Yumei, Shen, Changqing, Wang, Dong, Shi, Juanjuan, Jiang, Xingxing, Zhu, Zhongkui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As a breakthrough in the field of machine fault diagnosis, deep learning has great potential to extract more abstract and discriminative features automatically without much prior knowledge compared with other methods, such as the signal processing and analysis-based methods and machine learning methods with shallow architectures. One of the most important aspects in measuring the extracted features is whether they can explore more information of the inputs and avoid redundancy to be representative. Thus, a stacked sparse autoencoder (SAE)-based machine fault diagnosis method is proposed in this paper. The penalty term of the SAE can help mine essential information and avoid redundancy. To help the constructed diagnosis network further mine more abstract and representative high-level features, the collected non-stationary and transient signals are preprocessed with ensemble empirical mode decomposition and autoregressive (AR) models to obtain AR parameters, which are extracted based on the intrinsic mode functions (IMFs) and regarded as the low-level features for the inputs of the proposed diagnosis network. Only the first four IMFs are considered, because fault information is mainly reflected in high-frequency IMFs. Experiments and comparisons are complemented to validate the superiority of the presented diagnosis network. Results fully demonstrate that the stacked SAE-based diagnosis method can extract more discriminative high-level features and has a better performance in rotating machinery fault diagnosis compared with the traditional machine learning methods with shallow architectures.
AbstractList As a breakthrough in the field of machine fault diagnosis, deep learning has great potential to extract more abstract and discriminative features automatically without much prior knowledge compared with other methods, such as the signal processing and analysis-based methods and machine learning methods with shallow architectures. One of the most important aspects in measuring the extracted features is whether they can explore more information of the inputs and avoid redundancy to be representative. Thus, a stacked sparse autoencoder (SAE)-based machine fault diagnosis method is proposed in this paper. The penalty term of the SAE can help mine essential information and avoid redundancy. To help the constructed diagnosis network further mine more abstract and representative high-level features, the collected non-stationary and transient signals are preprocessed with ensemble empirical mode decomposition and autoregressive (AR) models to obtain AR parameters, which are extracted based on the intrinsic mode functions (IMFs) and regarded as the low-level features for the inputs of the proposed diagnosis network. Only the first four IMFs are considered, because fault information is mainly reflected in high-frequency IMFs. Experiments and comparisons are complemented to validate the superiority of the presented diagnosis network. Results fully demonstrate that the stacked SAE-based diagnosis method can extract more discriminative high-level features and has a better performance in rotating machinery fault diagnosis compared with the traditional machine learning methods with shallow architectures.
Author Juanjuan Shi
Yumei Qi
Zhongkui Zhu
Changqing Shen
Dong Wang
Xingxing Jiang
Author_xml – sequence: 1
  givenname: Yumei
  surname: Qi
  fullname: Qi, Yumei
– sequence: 2
  givenname: Changqing
  orcidid: 0000-0002-4792-1865
  surname: Shen
  fullname: Shen, Changqing
– sequence: 3
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
– sequence: 4
  givenname: Juanjuan
  surname: Shi
  fullname: Shi, Juanjuan
– sequence: 5
  givenname: Xingxing
  surname: Jiang
  fullname: Jiang, Xingxing
– sequence: 6
  givenname: Zhongkui
  surname: Zhu
  fullname: Zhu, Zhongkui
BookMark eNp9kU9vGyEQxVGVSs2_T5ALUs7rArO7wNF1kiZS0kh1qx4RC7Mujrs4gFXl23edTaKqh3IZ9GZ-TzN6R-RgiAMScsbZjHOmP84Xi8vlciYYlzMhhWKcvSOHgre6ggbag7_-H8hpzms2PjVKjTwkP5bFugf0dLm1KSOd70rEwUWPqfpk89i4QNzSL1h-x_RA-5jold1tCr0IdjXEHDKNPf0aiy1hWNE7636GAdPTCXnf203G05d6TL5fXX5bXFe3959vFvPbytVMlarr-k6B4633jgNwB41CDsoKZjn3zOm-1mIv1l4KkK1wvRSi9dwLqGuEY3Iz-fpo12abwi-bnky0wTwLMa2MTSW4DRpvOXh0neB9VwMyLZVogYtWohKMudHrfPLapvi4w1zMOu7SMK5vRN00GmrdwjilpymXYs4Je-PC_vo4lGTDxnBm9rGYKRazj8W8xDKy8A_7uvH_qbOJCoj4RkitAEDBH-etmT0
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_neunet_2020_06_014
crossref_primary_10_1016_j_rineng_2024_102622
crossref_primary_10_1016_j_aei_2022_101708
crossref_primary_10_1109_JIOT_2019_2940131
crossref_primary_10_1109_ACCESS_2020_3008208
crossref_primary_10_3390_en13071784
crossref_primary_10_1002_stc_2651
crossref_primary_10_1016_j_ymssp_2020_106861
crossref_primary_10_3390_electronics11193169
crossref_primary_10_2139_ssrn_5050068
crossref_primary_10_1109_ACCESS_2019_2903295
crossref_primary_10_1109_TASE_2020_3028151
crossref_primary_10_1109_TII_2018_2881543
crossref_primary_10_1109_ACCESS_2018_2880990
crossref_primary_10_1109_ACCESS_2022_3192019
crossref_primary_10_1109_LSP_2019_2936310
crossref_primary_10_1088_1361_6501_ad24ba
crossref_primary_10_32604_cmc_2023_033448
crossref_primary_10_1109_ACCESS_2018_2890566
crossref_primary_10_1016_j_enconman_2024_118665
crossref_primary_10_1016_j_rcim_2019_101920
crossref_primary_10_1016_j_knosys_2021_107932
crossref_primary_10_1109_ACCESS_2018_2876759
crossref_primary_10_1177_14759217241241985
crossref_primary_10_1177_1475921720948620
crossref_primary_10_3390_sym11060747
crossref_primary_10_1088_1361_6501_acbc3b
crossref_primary_10_1109_ACCESS_2019_2939546
crossref_primary_10_1109_ACCESS_2020_2966582
crossref_primary_10_1177_0954408920971976
crossref_primary_10_1155_2022_1679836
crossref_primary_10_1109_ACCESS_2018_2824352
crossref_primary_10_3390_rs13030371
crossref_primary_10_1186_s10033_021_00569_0
crossref_primary_10_3390_app12073329
crossref_primary_10_1016_j_asoc_2018_09_037
crossref_primary_10_1016_j_isatra_2019_05_021
crossref_primary_10_1016_j_foodchem_2020_127332
crossref_primary_10_1016_j_knosys_2023_110891
crossref_primary_10_1016_j_measurement_2022_112282
crossref_primary_10_1002_tee_23012
crossref_primary_10_1016_j_isatra_2020_07_011
crossref_primary_10_1177_09574565221139638
crossref_primary_10_1109_ACCESS_2018_2886078
crossref_primary_10_1049_smt2_12143
crossref_primary_10_1109_ACCESS_2021_3119544
crossref_primary_10_1109_ACCESS_2020_2970813
crossref_primary_10_1109_TETCI_2021_3115666
crossref_primary_10_1016_j_jmsy_2018_04_005
crossref_primary_10_1016_j_measurement_2019_05_002
crossref_primary_10_1007_s40430_024_04866_2
crossref_primary_10_1155_2021_6221545
crossref_primary_10_1109_ACCESS_2019_2936243
crossref_primary_10_3390_s20030660
crossref_primary_10_1016_j_knosys_2020_105764
crossref_primary_10_1016_j_knosys_2021_107142
crossref_primary_10_1016_j_knosys_2020_105484
crossref_primary_10_1109_JSEN_2020_2980596
crossref_primary_10_1177_1687814018824812
crossref_primary_10_3390_s19224933
crossref_primary_10_1007_s00500_018_3178_x
crossref_primary_10_1177_1475921719893594
crossref_primary_10_3390_jmse11091678
crossref_primary_10_1016_j_artmed_2021_102128
crossref_primary_10_1109_TIM_2019_2923829
crossref_primary_10_1109_ACCESS_2020_3016888
crossref_primary_10_1109_ACCESS_2017_2785763
crossref_primary_10_1109_ACCESS_2018_2869923
crossref_primary_10_3390_s21134410
crossref_primary_10_1109_ACCESS_2021_3057382
crossref_primary_10_1109_ACCESS_2023_3324961
crossref_primary_10_1088_1742_6596_2252_1_012076
crossref_primary_10_1177_1475921719879965
crossref_primary_10_1016_j_conengprac_2023_105820
crossref_primary_10_1109_JSEN_2021_3123807
crossref_primary_10_3390_app12042158
crossref_primary_10_3390_s22134881
crossref_primary_10_1109_TNNLS_2020_3027160
crossref_primary_10_1007_s12206_025_0607_5
crossref_primary_10_1016_j_conengprac_2020_104358
crossref_primary_10_1177_09544100231158421
crossref_primary_10_3390_app13042376
crossref_primary_10_1007_s00170_019_03748_5
crossref_primary_10_3390_s20061774
crossref_primary_10_1007_s00170_022_10792_1
crossref_primary_10_1109_JSEN_2020_2976523
crossref_primary_10_1109_ACCESS_2021_3057399
crossref_primary_10_1177_14759217221117277
crossref_primary_10_1016_j_engappai_2023_107498
crossref_primary_10_1109_ACCESS_2020_3012182
crossref_primary_10_1007_s11760_021_01939_w
crossref_primary_10_3390_s23135970
crossref_primary_10_1088_1361_6501_adfaf8
crossref_primary_10_1109_ACCESS_2020_2966260
crossref_primary_10_1109_ACCESS_2020_3027830
crossref_primary_10_3390_e24010036
crossref_primary_10_3390_s19051088
crossref_primary_10_3390_s21165488
crossref_primary_10_1109_ACCESS_2019_2937838
crossref_primary_10_1016_j_ymssp_2020_107084
crossref_primary_10_3390_sym11101212
crossref_primary_10_3390_w15152704
crossref_primary_10_1007_s00500_023_09068_x
crossref_primary_10_3390_en14217017
crossref_primary_10_1177_13506501221082746
crossref_primary_10_1049_iet_rpg_2018_5627
crossref_primary_10_32604_cmc_2022_030399
crossref_primary_10_1016_j_measurement_2022_111304
crossref_primary_10_1177_01423312231157118
crossref_primary_10_1109_TGRS_2017_2777868
crossref_primary_10_3390_app9081603
crossref_primary_10_1007_s00521_019_04097_w
crossref_primary_10_1109_ACCESS_2019_2957202
crossref_primary_10_1016_j_neucom_2020_04_045
crossref_primary_10_1016_j_measurement_2019_107419
crossref_primary_10_1016_j_measurement_2024_114382
crossref_primary_10_1016_j_procir_2018_12_008
crossref_primary_10_1016_j_eswa_2022_117408
crossref_primary_10_1109_ACCESS_2021_3055427
crossref_primary_10_1109_TIM_2021_3051948
crossref_primary_10_1088_1361_6501_acc11c
crossref_primary_10_1109_ACCESS_2020_3010066
crossref_primary_10_1109_ACCESS_2021_3060863
crossref_primary_10_1109_ACCESS_2023_3244795
crossref_primary_10_1016_j_jmsy_2023_05_027
crossref_primary_10_1109_TIM_2023_3305665
crossref_primary_10_1016_j_asoc_2020_106119
crossref_primary_10_1016_j_tust_2023_105317
crossref_primary_10_1109_ACCESS_2022_3140287
crossref_primary_10_1587_transfun_2024EAP1108
crossref_primary_10_3390_en12173221
crossref_primary_10_1007_s12652_022_04436_1
crossref_primary_10_1016_j_measurement_2019_107371
crossref_primary_10_1016_j_rineng_2025_106925
crossref_primary_10_1109_ACCESS_2019_2962734
crossref_primary_10_1109_ACCESS_2021_3065195
crossref_primary_10_3390_jcs5070185
crossref_primary_10_1109_TMECH_2020_3012179
crossref_primary_10_1109_TAI_2021_3123935
crossref_primary_10_3390_en12193708
crossref_primary_10_1016_j_cja_2021_04_012
crossref_primary_10_1088_1361_6501_aae5b2
crossref_primary_10_1109_TII_2018_2868687
crossref_primary_10_1007_s00170_020_06401_8
crossref_primary_10_1177_14759217241305159
crossref_primary_10_1109_ACCESS_2019_2916461
crossref_primary_10_3390_e21060621
crossref_primary_10_3390_app142311226
crossref_primary_10_1520_SSMS20190023
crossref_primary_10_1109_JSEN_2020_3021918
crossref_primary_10_1109_TII_2020_2967822
crossref_primary_10_1109_TR_2022_3180273
crossref_primary_10_1109_ACCESS_2021_3052217
crossref_primary_10_1109_ACCESS_2020_2974942
crossref_primary_10_3390_sym10120770
crossref_primary_10_1016_j_measurement_2021_109116
crossref_primary_10_1109_ACCESS_2019_2918409
crossref_primary_10_1016_j_asoc_2021_108397
crossref_primary_10_1088_1361_6501_ac8dae
crossref_primary_10_1016_j_asoc_2020_106351
crossref_primary_10_1109_TIM_2025_3548229
crossref_primary_10_1016_j_measurement_2021_110460
crossref_primary_10_1109_ACCESS_2018_2868197
crossref_primary_10_1007_s10462_022_10293_3
crossref_primary_10_1109_ACCESS_2019_2924003
crossref_primary_10_1109_ACCESS_2021_3110947
Cites_doi 10.1016/j.measurement.2016.07.054
10.1016/j.eswa.2016.04.032
10.1016/j.ymssp.2015.10.025
10.1115/1.4023814
10.1016/j.measurement.2011.10.008
10.1016/j.jsv.2016.09.018
10.1016/j.measurement.2016.04.007
10.1016/j.aei.2017.02.005
10.1016/j.sigpro.2015.01.001
10.1155/2014/418069
10.1016/j.measurement.2012.12.011
10.1016/j.engappai.2008.07.006
10.1016/j.neucom.2015.06.008
10.1109/CVPR.2014.214
10.1088/0957-0233/22/1/015702
10.3115/v1/N15-1011
10.1109/CVPR.2014.81
10.1016/j.sigpro.2013.04.015
10.1155/2011/703210
10.1016/j.ress.2013.02.022
10.1016/j.knosys.2016.12.012
10.1016/j.ymssp.2015.11.014
10.1016/j.ymssp.2012.09.015
10.1038/nature14539
10.1109/TPAMI.2012.59
10.1016/j.patcog.2010.12.012
10.1109/TIE.2010.2095391
10.1016/j.ymssp.2015.04.002
10.1016/j.eswa.2013.12.026
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2017.2728010
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals - DOAJ (NTUSG)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 15079
ExternalDocumentID oai_doaj_org_article_da13decb21fb43e09782631267e8200c
10_1109_ACCESS_2017_2728010
7983338
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20150339
  funderid: 10.13039/501100004608
– fundername: Jiangsu Postdoctoral Science Foundation funded project
  grantid: 1601227C
– fundername: National Natural Science Foundation of China
  grantid: 51505311; 51375322
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c408t-bbfb83c16ddc1331c358e138a20a11d0c9f492358e4d723762cf7226d1d2344e3
IEDL.DBID RIE
ISICitedReferencesCount 195
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000408176800019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:24:53 EDT 2025
Mon Jun 30 05:30:11 EDT 2025
Sat Nov 29 06:22:05 EST 2025
Tue Nov 18 21:29:30 EST 2025
Tue Aug 26 16:39:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-bbfb83c16ddc1331c358e138a20a11d0c9f492358e4d723762cf7226d1d2344e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4792-1865
OpenAccessLink https://ieeexplore.ieee.org/document/7983338
PQID 2455934963
PQPubID 4845423
PageCount 14
ParticipantIDs crossref_primary_10_1109_ACCESS_2017_2728010
ieee_primary_7983338
crossref_citationtrail_10_1109_ACCESS_2017_2728010
proquest_journals_2455934963
doaj_primary_oai_doaj_org_article_da13decb21fb43e09782631267e8200c
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References chen (ref11) 2017; 32
ref12
ref15
ref30
ref10
ref2
ref1
ref17
ref16
ref19
ref18
van den oord (ref14) 2013
ref24
yan (ref3) 2014; 96
ref23
ref26
ref25
ref20
ref22
ref21
liu (ref31) 2016; 120
ref28
ref27
hannun (ref13) 2014
ref29
ref8
ref7
ref9
ref4
ref6
ref5
References_xml – ident: ref28
  doi: 10.1016/j.measurement.2016.07.054
– start-page: 2643
  year: 2013
  ident: ref14
  article-title: Deep contentbased music recommendation
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref15
  doi: 10.1016/j.eswa.2016.04.032
– ident: ref24
  doi: 10.1016/j.ymssp.2015.10.025
– ident: ref5
  doi: 10.1115/1.4023814
– ident: ref9
  doi: 10.1016/j.measurement.2011.10.008
– ident: ref7
  doi: 10.1016/j.jsv.2016.09.018
– ident: ref30
  doi: 10.1016/j.measurement.2016.04.007
– volume: 32
  start-page: 139
  year: 2017
  ident: ref11
  article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2017.02.005
– volume: 120
  start-page: 761
  year: 2016
  ident: ref31
  article-title: Multimodal video classification with stacked contractive autoencoders
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2015.01.001
– ident: ref21
  doi: 10.1155/2014/418069
– ident: ref8
  doi: 10.1016/j.measurement.2012.12.011
– ident: ref10
  doi: 10.1016/j.engappai.2008.07.006
– ident: ref26
  doi: 10.1016/j.neucom.2015.06.008
– ident: ref18
  doi: 10.1109/CVPR.2014.214
– ident: ref4
  doi: 10.1088/0957-0233/22/1/015702
– ident: ref20
  doi: 10.3115/v1/N15-1011
– ident: ref19
  doi: 10.1109/CVPR.2014.81
– volume: 96
  start-page: 1
  year: 2014
  ident: ref3
  article-title: Wavelets for fault diagnosis of rotary machines: A review with applications
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2013.04.015
– ident: ref29
  doi: 10.1155/2011/703210
– ident: ref23
  doi: 10.1016/j.ress.2013.02.022
– ident: ref25
  doi: 10.1016/j.knosys.2016.12.012
– ident: ref27
  doi: 10.1016/j.ymssp.2015.11.014
– ident: ref6
  doi: 10.1016/j.ymssp.2012.09.015
– ident: ref12
  doi: 10.1038/nature14539
– ident: ref16
  doi: 10.1109/TPAMI.2012.59
– ident: ref17
  doi: 10.1016/j.patcog.2010.12.012
– ident: ref2
  doi: 10.1109/TIE.2010.2095391
– ident: ref1
  doi: 10.1016/j.ymssp.2015.04.002
– ident: ref22
  doi: 10.1016/j.eswa.2013.12.026
– start-page: 1
  year: 2014
  ident: ref13
  publication-title: Deep speech Scaling up end-to-end speech recognition
SSID ssj0000816957
Score 2.5182416
Snippet As a breakthrough in the field of machine fault diagnosis, deep learning has great potential to extract more abstract and discriminative features automatically...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15066
SubjectTerms autoregressive model
Autoregressive models
Autoregressive processes
Data mining
Empirical analysis
ensemble empirical mode decomposition
Fault diagnosis
Feature extraction
Learning systems
Machine learning
Machinery
Redundancy
Rotating machinery
Signal processing
Sparse autoencoder
Support vector machines
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYh9JAeStpN6CZp0KHHuNFrLem4jyy9dAlJS3MTskYugbBedr2B_PtqbO9iCLSXXIX80MxoZj579A0hX5WVI289yyCwmCkRIPNa5FkKdZDno1IFAU2zCb1YmIcHe9tr9YU1YS09cCu4a_BcQgyF4GWhZMRjByKXXOQ6puDFAnpfpm0PTDU-2PDcjnRHM8SZvR5Pp2lFWMulvwnsyYRnZnuhqGHs71qsvPLLTbCZH5MPXZZIx-3bfSQHcfmJvO9xBw7I75Qmph0I9H6VsGmk421dISklxHU2SaEJ6CzGFV20Zd405aZ07rdPNZ21xXWPG1qV9K7CX_HLP_RHU1QZ1y8n5Nf85uf0e9Z1SciCYqbOiqIsjAw8BwgJcPIgRyZyabxgnnNgwZZIwpYGFWisgRGh1CnpAg5CKhXlKTlcVsv4mVDPVcgTai2ZtAqU8p4VplCBQfIKpTJDInYCc6GjEMdOFk-ugRLMulbKDqXsOikPydX-olXLoPHv6RPUxH4q0l83A8koXGcU7n9GMSQD1OP-JtoambD4kFzs9Oq6rbpxQiVQhbT58uwtHn1OjnA57VeaC3JYr7fxC3kXnuvHzfqysdK_BHXmWw
  priority: 102
  providerName: Directory of Open Access Journals
Title Stacked Sparse Autoencoder-Based Deep Network for Fault Diagnosis of Rotating Machinery
URI https://ieeexplore.ieee.org/document/7983338
https://www.proquest.com/docview/2455934963
https://doaj.org/article/da13decb21fb43e09782631267e8200c
Volume 5
WOSCitedRecordID wos000408176800019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals - DOAJ (NTUSG)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6S0EN76Cst2TYNOvQYJ3qtZR03myy9ZCl90NyErJFLIKyXXW-hl_72amTHBFoKvRgjJCP5kzQz0sw3AO-1VVNvPS8w8FhoGbDwRpZFEnVYltNGB4k52YRZLqubG_txD07HWJgYY3Y-i2f0mu_ysQ07Oio7N7ZSyaTah31jyj5WazxPoQQSdmoGYiHB7flsPk9jIO8tcyYpCxNFyT4QPpmjf0iq8sdOnMXL4tn_dew5PB3USDbrcX8Be3H1Ep48IBc8hG9Jj0xLFNnndTJeI5vtupZYKzFuiosku5Bdxrhmy94PnCXllS387q5jl7333e2WtQ371NJd_eo7u85el3Hz8xV8XVx9mX8ohjQKRdC86oq6bupKBVEihmSRiqCmVRSq8pJ7IZAH2xBLWyrUaMhJRobGJK0MBUqldVSv4WDVruIRMC90KJNZ23BlNWrtPa-rWgeOadtodDUBef9_XRg4xinVxZ3Ltga3rgfFEShuAGUCp2OjdU-x8e_qFwTcWJX4sXNBQsQNy82hFwpjqKVoaq0iBavIUglZmphUHh4mcEgojh8ZAJzA8f00cMNa3jqpk9VFvPrqzd9bvYXH1MH-YOYYDrrNLr6DR-FHd7vdnGQrPz2vf12d5Cn7G7Uc5hY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQceBXEQgEfODatX3n4uN2yKqJdISiiN8vxOKhStVntZpH493icNKoEQuIWWXbk5LM9D898A_BeG5U743iGnodMS4-ZK2WRRVGHRZE32ktMxSbKxaK6vDSfd-BgzIUJIaTgs3BIj-kuH1u_JVfZUWkqFU2qO3A311ryPltr9KhQCQmTlwO1kODmaDqbxa-g-K3yUFIdJsqTvSV-Ekv_UFblj7M4CZj54_-b2hN4NCiSbNoj_xR2wvIZPLxFL7gH36MmGTcpsq-raL4GNt12LfFWYlhnx1F6ITsJYcUWfSQ4i-orm7vtdcdO-vi7qw1rG_alpdv65Q92nuIuw_rXc_g2_3AxO82GQgqZ17zqsrpu6kp5USD6aJMKr_IqCFU5yZ0QyL1piKctNmosKUxG-qaMehkKlErroF7A7rJdhpfAnNC-iIZtw5XRqLVzvK5q7TnGg6PR1QTkzf-1fmAZp2IX1zZZG9zYHhRLoNgBlAkcjINWPcnGv7sfE3BjV2LITg0RETtsOItOKAy-lqKptQqUriILJWRRhqj0cD-BPUJxfMkA4AT2b5aBHXbzxkod7S5i1lev_j7qHdw_vTg_s2cfF59ewwOabO-m2Yfdbr0Nb-Ce_9ldbdZv05L9DfpP5zc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacked+Sparse+Autoencoder-Based+Deep+Network+for+Fault+Diagnosis+of+Rotating+Machinery&rft.jtitle=IEEE+access&rft.au=Yumei+Qi&rft.au=Changqing+Shen&rft.au=Dong+Wang&rft.au=Juanjuan+Shi&rft.date=2017-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=5&rft.spage=15066&rft.epage=15079&rft_id=info:doi/10.1109%2FACCESS.2017.2728010&rft.externalDocID=7983338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon