Stacked Sparse Autoencoder-Based Deep Network for Fault Diagnosis of Rotating Machinery
As a breakthrough in the field of machine fault diagnosis, deep learning has great potential to extract more abstract and discriminative features automatically without much prior knowledge compared with other methods, such as the signal processing and analysis-based methods and machine learning meth...
Saved in:
| Published in: | IEEE access Vol. 5; pp. 15066 - 15079 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As a breakthrough in the field of machine fault diagnosis, deep learning has great potential to extract more abstract and discriminative features automatically without much prior knowledge compared with other methods, such as the signal processing and analysis-based methods and machine learning methods with shallow architectures. One of the most important aspects in measuring the extracted features is whether they can explore more information of the inputs and avoid redundancy to be representative. Thus, a stacked sparse autoencoder (SAE)-based machine fault diagnosis method is proposed in this paper. The penalty term of the SAE can help mine essential information and avoid redundancy. To help the constructed diagnosis network further mine more abstract and representative high-level features, the collected non-stationary and transient signals are preprocessed with ensemble empirical mode decomposition and autoregressive (AR) models to obtain AR parameters, which are extracted based on the intrinsic mode functions (IMFs) and regarded as the low-level features for the inputs of the proposed diagnosis network. Only the first four IMFs are considered, because fault information is mainly reflected in high-frequency IMFs. Experiments and comparisons are complemented to validate the superiority of the presented diagnosis network. Results fully demonstrate that the stacked SAE-based diagnosis method can extract more discriminative high-level features and has a better performance in rotating machinery fault diagnosis compared with the traditional machine learning methods with shallow architectures. |
|---|---|
| AbstractList | As a breakthrough in the field of machine fault diagnosis, deep learning has great potential to extract more abstract and discriminative features automatically without much prior knowledge compared with other methods, such as the signal processing and analysis-based methods and machine learning methods with shallow architectures. One of the most important aspects in measuring the extracted features is whether they can explore more information of the inputs and avoid redundancy to be representative. Thus, a stacked sparse autoencoder (SAE)-based machine fault diagnosis method is proposed in this paper. The penalty term of the SAE can help mine essential information and avoid redundancy. To help the constructed diagnosis network further mine more abstract and representative high-level features, the collected non-stationary and transient signals are preprocessed with ensemble empirical mode decomposition and autoregressive (AR) models to obtain AR parameters, which are extracted based on the intrinsic mode functions (IMFs) and regarded as the low-level features for the inputs of the proposed diagnosis network. Only the first four IMFs are considered, because fault information is mainly reflected in high-frequency IMFs. Experiments and comparisons are complemented to validate the superiority of the presented diagnosis network. Results fully demonstrate that the stacked SAE-based diagnosis method can extract more discriminative high-level features and has a better performance in rotating machinery fault diagnosis compared with the traditional machine learning methods with shallow architectures. |
| Author | Juanjuan Shi Yumei Qi Zhongkui Zhu Changqing Shen Dong Wang Xingxing Jiang |
| Author_xml | – sequence: 1 givenname: Yumei surname: Qi fullname: Qi, Yumei – sequence: 2 givenname: Changqing orcidid: 0000-0002-4792-1865 surname: Shen fullname: Shen, Changqing – sequence: 3 givenname: Dong surname: Wang fullname: Wang, Dong – sequence: 4 givenname: Juanjuan surname: Shi fullname: Shi, Juanjuan – sequence: 5 givenname: Xingxing surname: Jiang fullname: Jiang, Xingxing – sequence: 6 givenname: Zhongkui surname: Zhu fullname: Zhu, Zhongkui |
| BookMark | eNp9kU9vGyEQxVGVSs2_T5ALUs7rArO7wNF1kiZS0kh1qx4RC7Mujrs4gFXl23edTaKqh3IZ9GZ-TzN6R-RgiAMScsbZjHOmP84Xi8vlciYYlzMhhWKcvSOHgre6ggbag7_-H8hpzms2PjVKjTwkP5bFugf0dLm1KSOd70rEwUWPqfpk89i4QNzSL1h-x_RA-5jold1tCr0IdjXEHDKNPf0aiy1hWNE7636GAdPTCXnf203G05d6TL5fXX5bXFe3959vFvPbytVMlarr-k6B4633jgNwB41CDsoKZjn3zOm-1mIv1l4KkK1wvRSi9dwLqGuEY3Iz-fpo12abwi-bnky0wTwLMa2MTSW4DRpvOXh0neB9VwMyLZVogYtWohKMudHrfPLapvi4w1zMOu7SMK5vRN00GmrdwjilpymXYs4Je-PC_vo4lGTDxnBm9rGYKRazj8W8xDKy8A_7uvH_qbOJCoj4RkitAEDBH-etmT0 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_neunet_2020_06_014 crossref_primary_10_1016_j_rineng_2024_102622 crossref_primary_10_1016_j_aei_2022_101708 crossref_primary_10_1109_JIOT_2019_2940131 crossref_primary_10_1109_ACCESS_2020_3008208 crossref_primary_10_3390_en13071784 crossref_primary_10_1002_stc_2651 crossref_primary_10_1016_j_ymssp_2020_106861 crossref_primary_10_3390_electronics11193169 crossref_primary_10_2139_ssrn_5050068 crossref_primary_10_1109_ACCESS_2019_2903295 crossref_primary_10_1109_TASE_2020_3028151 crossref_primary_10_1109_TII_2018_2881543 crossref_primary_10_1109_ACCESS_2018_2880990 crossref_primary_10_1109_ACCESS_2022_3192019 crossref_primary_10_1109_LSP_2019_2936310 crossref_primary_10_1088_1361_6501_ad24ba crossref_primary_10_32604_cmc_2023_033448 crossref_primary_10_1109_ACCESS_2018_2890566 crossref_primary_10_1016_j_enconman_2024_118665 crossref_primary_10_1016_j_rcim_2019_101920 crossref_primary_10_1016_j_knosys_2021_107932 crossref_primary_10_1109_ACCESS_2018_2876759 crossref_primary_10_1177_14759217241241985 crossref_primary_10_1177_1475921720948620 crossref_primary_10_3390_sym11060747 crossref_primary_10_1088_1361_6501_acbc3b crossref_primary_10_1109_ACCESS_2019_2939546 crossref_primary_10_1109_ACCESS_2020_2966582 crossref_primary_10_1177_0954408920971976 crossref_primary_10_1155_2022_1679836 crossref_primary_10_1109_ACCESS_2018_2824352 crossref_primary_10_3390_rs13030371 crossref_primary_10_1186_s10033_021_00569_0 crossref_primary_10_3390_app12073329 crossref_primary_10_1016_j_asoc_2018_09_037 crossref_primary_10_1016_j_isatra_2019_05_021 crossref_primary_10_1016_j_foodchem_2020_127332 crossref_primary_10_1016_j_knosys_2023_110891 crossref_primary_10_1016_j_measurement_2022_112282 crossref_primary_10_1002_tee_23012 crossref_primary_10_1016_j_isatra_2020_07_011 crossref_primary_10_1177_09574565221139638 crossref_primary_10_1109_ACCESS_2018_2886078 crossref_primary_10_1049_smt2_12143 crossref_primary_10_1109_ACCESS_2021_3119544 crossref_primary_10_1109_ACCESS_2020_2970813 crossref_primary_10_1109_TETCI_2021_3115666 crossref_primary_10_1016_j_jmsy_2018_04_005 crossref_primary_10_1016_j_measurement_2019_05_002 crossref_primary_10_1007_s40430_024_04866_2 crossref_primary_10_1155_2021_6221545 crossref_primary_10_1109_ACCESS_2019_2936243 crossref_primary_10_3390_s20030660 crossref_primary_10_1016_j_knosys_2020_105764 crossref_primary_10_1016_j_knosys_2021_107142 crossref_primary_10_1016_j_knosys_2020_105484 crossref_primary_10_1109_JSEN_2020_2980596 crossref_primary_10_1177_1687814018824812 crossref_primary_10_3390_s19224933 crossref_primary_10_1007_s00500_018_3178_x crossref_primary_10_1177_1475921719893594 crossref_primary_10_3390_jmse11091678 crossref_primary_10_1016_j_artmed_2021_102128 crossref_primary_10_1109_TIM_2019_2923829 crossref_primary_10_1109_ACCESS_2020_3016888 crossref_primary_10_1109_ACCESS_2017_2785763 crossref_primary_10_1109_ACCESS_2018_2869923 crossref_primary_10_3390_s21134410 crossref_primary_10_1109_ACCESS_2021_3057382 crossref_primary_10_1109_ACCESS_2023_3324961 crossref_primary_10_1088_1742_6596_2252_1_012076 crossref_primary_10_1177_1475921719879965 crossref_primary_10_1016_j_conengprac_2023_105820 crossref_primary_10_1109_JSEN_2021_3123807 crossref_primary_10_3390_app12042158 crossref_primary_10_3390_s22134881 crossref_primary_10_1109_TNNLS_2020_3027160 crossref_primary_10_1007_s12206_025_0607_5 crossref_primary_10_1016_j_conengprac_2020_104358 crossref_primary_10_1177_09544100231158421 crossref_primary_10_3390_app13042376 crossref_primary_10_1007_s00170_019_03748_5 crossref_primary_10_3390_s20061774 crossref_primary_10_1007_s00170_022_10792_1 crossref_primary_10_1109_JSEN_2020_2976523 crossref_primary_10_1109_ACCESS_2021_3057399 crossref_primary_10_1177_14759217221117277 crossref_primary_10_1016_j_engappai_2023_107498 crossref_primary_10_1109_ACCESS_2020_3012182 crossref_primary_10_1007_s11760_021_01939_w crossref_primary_10_3390_s23135970 crossref_primary_10_1088_1361_6501_adfaf8 crossref_primary_10_1109_ACCESS_2020_2966260 crossref_primary_10_1109_ACCESS_2020_3027830 crossref_primary_10_3390_e24010036 crossref_primary_10_3390_s19051088 crossref_primary_10_3390_s21165488 crossref_primary_10_1109_ACCESS_2019_2937838 crossref_primary_10_1016_j_ymssp_2020_107084 crossref_primary_10_3390_sym11101212 crossref_primary_10_3390_w15152704 crossref_primary_10_1007_s00500_023_09068_x crossref_primary_10_3390_en14217017 crossref_primary_10_1177_13506501221082746 crossref_primary_10_1049_iet_rpg_2018_5627 crossref_primary_10_32604_cmc_2022_030399 crossref_primary_10_1016_j_measurement_2022_111304 crossref_primary_10_1177_01423312231157118 crossref_primary_10_1109_TGRS_2017_2777868 crossref_primary_10_3390_app9081603 crossref_primary_10_1007_s00521_019_04097_w crossref_primary_10_1109_ACCESS_2019_2957202 crossref_primary_10_1016_j_neucom_2020_04_045 crossref_primary_10_1016_j_measurement_2019_107419 crossref_primary_10_1016_j_measurement_2024_114382 crossref_primary_10_1016_j_procir_2018_12_008 crossref_primary_10_1016_j_eswa_2022_117408 crossref_primary_10_1109_ACCESS_2021_3055427 crossref_primary_10_1109_TIM_2021_3051948 crossref_primary_10_1088_1361_6501_acc11c crossref_primary_10_1109_ACCESS_2020_3010066 crossref_primary_10_1109_ACCESS_2021_3060863 crossref_primary_10_1109_ACCESS_2023_3244795 crossref_primary_10_1016_j_jmsy_2023_05_027 crossref_primary_10_1109_TIM_2023_3305665 crossref_primary_10_1016_j_asoc_2020_106119 crossref_primary_10_1016_j_tust_2023_105317 crossref_primary_10_1109_ACCESS_2022_3140287 crossref_primary_10_1587_transfun_2024EAP1108 crossref_primary_10_3390_en12173221 crossref_primary_10_1007_s12652_022_04436_1 crossref_primary_10_1016_j_measurement_2019_107371 crossref_primary_10_1016_j_rineng_2025_106925 crossref_primary_10_1109_ACCESS_2019_2962734 crossref_primary_10_1109_ACCESS_2021_3065195 crossref_primary_10_3390_jcs5070185 crossref_primary_10_1109_TMECH_2020_3012179 crossref_primary_10_1109_TAI_2021_3123935 crossref_primary_10_3390_en12193708 crossref_primary_10_1016_j_cja_2021_04_012 crossref_primary_10_1088_1361_6501_aae5b2 crossref_primary_10_1109_TII_2018_2868687 crossref_primary_10_1007_s00170_020_06401_8 crossref_primary_10_1177_14759217241305159 crossref_primary_10_1109_ACCESS_2019_2916461 crossref_primary_10_3390_e21060621 crossref_primary_10_3390_app142311226 crossref_primary_10_1520_SSMS20190023 crossref_primary_10_1109_JSEN_2020_3021918 crossref_primary_10_1109_TII_2020_2967822 crossref_primary_10_1109_TR_2022_3180273 crossref_primary_10_1109_ACCESS_2021_3052217 crossref_primary_10_1109_ACCESS_2020_2974942 crossref_primary_10_3390_sym10120770 crossref_primary_10_1016_j_measurement_2021_109116 crossref_primary_10_1109_ACCESS_2019_2918409 crossref_primary_10_1016_j_asoc_2021_108397 crossref_primary_10_1088_1361_6501_ac8dae crossref_primary_10_1016_j_asoc_2020_106351 crossref_primary_10_1109_TIM_2025_3548229 crossref_primary_10_1016_j_measurement_2021_110460 crossref_primary_10_1109_ACCESS_2018_2868197 crossref_primary_10_1007_s10462_022_10293_3 crossref_primary_10_1109_ACCESS_2019_2924003 crossref_primary_10_1109_ACCESS_2021_3110947 |
| Cites_doi | 10.1016/j.measurement.2016.07.054 10.1016/j.eswa.2016.04.032 10.1016/j.ymssp.2015.10.025 10.1115/1.4023814 10.1016/j.measurement.2011.10.008 10.1016/j.jsv.2016.09.018 10.1016/j.measurement.2016.04.007 10.1016/j.aei.2017.02.005 10.1016/j.sigpro.2015.01.001 10.1155/2014/418069 10.1016/j.measurement.2012.12.011 10.1016/j.engappai.2008.07.006 10.1016/j.neucom.2015.06.008 10.1109/CVPR.2014.214 10.1088/0957-0233/22/1/015702 10.3115/v1/N15-1011 10.1109/CVPR.2014.81 10.1016/j.sigpro.2013.04.015 10.1155/2011/703210 10.1016/j.ress.2013.02.022 10.1016/j.knosys.2016.12.012 10.1016/j.ymssp.2015.11.014 10.1016/j.ymssp.2012.09.015 10.1038/nature14539 10.1109/TPAMI.2012.59 10.1016/j.patcog.2010.12.012 10.1109/TIE.2010.2095391 10.1016/j.ymssp.2015.04.002 10.1016/j.eswa.2013.12.026 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2017.2728010 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 15079 |
| ExternalDocumentID | oai_doaj_org_article_da13decb21fb43e09782631267e8200c 10_1109_ACCESS_2017_2728010 7983338 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20150339 funderid: 10.13039/501100004608 – fundername: Jiangsu Postdoctoral Science Foundation funded project grantid: 1601227C – fundername: National Natural Science Foundation of China grantid: 51505311; 51375322 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c408t-bbfb83c16ddc1331c358e138a20a11d0c9f492358e4d723762cf7226d1d2344e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 195 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000408176800019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:24:53 EDT 2025 Mon Jun 30 05:30:11 EDT 2025 Sat Nov 29 06:22:05 EST 2025 Tue Nov 18 21:29:30 EST 2025 Tue Aug 26 16:39:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-bbfb83c16ddc1331c358e138a20a11d0c9f492358e4d723762cf7226d1d2344e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4792-1865 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/7983338 |
| PQID | 2455934963 |
| PQPubID | 4845423 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2017_2728010 ieee_primary_7983338 crossref_citationtrail_10_1109_ACCESS_2017_2728010 proquest_journals_2455934963 doaj_primary_oai_doaj_org_article_da13decb21fb43e09782631267e8200c |
| PublicationCentury | 2000 |
| PublicationDate | 2017-01-01 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | chen (ref11) 2017; 32 ref12 ref15 ref30 ref10 ref2 ref1 ref17 ref16 ref19 ref18 van den oord (ref14) 2013 ref24 yan (ref3) 2014; 96 ref23 ref26 ref25 ref20 ref22 ref21 liu (ref31) 2016; 120 ref28 ref27 hannun (ref13) 2014 ref29 ref8 ref7 ref9 ref4 ref6 ref5 |
| References_xml | – ident: ref28 doi: 10.1016/j.measurement.2016.07.054 – start-page: 2643 year: 2013 ident: ref14 article-title: Deep contentbased music recommendation publication-title: Proc Adv Neural Inf Process Syst – ident: ref15 doi: 10.1016/j.eswa.2016.04.032 – ident: ref24 doi: 10.1016/j.ymssp.2015.10.025 – ident: ref5 doi: 10.1115/1.4023814 – ident: ref9 doi: 10.1016/j.measurement.2011.10.008 – ident: ref7 doi: 10.1016/j.jsv.2016.09.018 – ident: ref30 doi: 10.1016/j.measurement.2016.04.007 – volume: 32 start-page: 139 year: 2017 ident: ref11 article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification publication-title: Adv Eng Inform doi: 10.1016/j.aei.2017.02.005 – volume: 120 start-page: 761 year: 2016 ident: ref31 article-title: Multimodal video classification with stacked contractive autoencoders publication-title: Signal Process doi: 10.1016/j.sigpro.2015.01.001 – ident: ref21 doi: 10.1155/2014/418069 – ident: ref8 doi: 10.1016/j.measurement.2012.12.011 – ident: ref10 doi: 10.1016/j.engappai.2008.07.006 – ident: ref26 doi: 10.1016/j.neucom.2015.06.008 – ident: ref18 doi: 10.1109/CVPR.2014.214 – ident: ref4 doi: 10.1088/0957-0233/22/1/015702 – ident: ref20 doi: 10.3115/v1/N15-1011 – ident: ref19 doi: 10.1109/CVPR.2014.81 – volume: 96 start-page: 1 year: 2014 ident: ref3 article-title: Wavelets for fault diagnosis of rotary machines: A review with applications publication-title: Signal Process doi: 10.1016/j.sigpro.2013.04.015 – ident: ref29 doi: 10.1155/2011/703210 – ident: ref23 doi: 10.1016/j.ress.2013.02.022 – ident: ref25 doi: 10.1016/j.knosys.2016.12.012 – ident: ref27 doi: 10.1016/j.ymssp.2015.11.014 – ident: ref6 doi: 10.1016/j.ymssp.2012.09.015 – ident: ref12 doi: 10.1038/nature14539 – ident: ref16 doi: 10.1109/TPAMI.2012.59 – ident: ref17 doi: 10.1016/j.patcog.2010.12.012 – ident: ref2 doi: 10.1109/TIE.2010.2095391 – ident: ref1 doi: 10.1016/j.ymssp.2015.04.002 – ident: ref22 doi: 10.1016/j.eswa.2013.12.026 – start-page: 1 year: 2014 ident: ref13 publication-title: Deep speech Scaling up end-to-end speech recognition |
| SSID | ssj0000816957 |
| Score | 2.5183115 |
| Snippet | As a breakthrough in the field of machine fault diagnosis, deep learning has great potential to extract more abstract and discriminative features automatically... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 15066 |
| SubjectTerms | autoregressive model Autoregressive models Autoregressive processes Data mining Empirical analysis ensemble empirical mode decomposition Fault diagnosis Feature extraction Learning systems Machine learning Machinery Redundancy Rotating machinery Signal processing Sparse autoencoder Support vector machines |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxELWqikM5IKCtCBTkA8cu9VfW9jFNiThAhAqovVm741lUqUqiZIPEv2dmdxtFqgQXjmvtl8djz7zd5zdCvAdPcT2CKcoYVOF0g0WtY1OMlWaSggaHnc7sZz-fh9vb-HWv1Bdzwnp54N5wF7nSNiPURje1s8jbDkxptSk9UvBSwKuv8nEPTHVrcNBlHPtBZkireDGZTqlHzOXyHwzXZOI9s3uhqFPsH0qsPFqXu2Azey6eDVminPRv90Ic4OKleLqnHXgsbihNpBmY5bcVYVOUk227ZFHKjOvikkJTlleIKznvad6SclM5q7b3rbzqyXV3G7ls5PWSf8UvfsovHakS179PxI_Zx-_TT8VQJaEAp0Jb1HVTBwu6zBkIcGqw44DahsqoSuusIDYswkaNLnvmwBhoPCVdWWdjnUN7Kg4XywW-EhId5MoDqGjABcJOdEz5B0GKOhqPfiTMg8ESDBLiXMniPnVQQsXUWzmxldNg5ZE431206hU0_n76JY_E7lSWv-4ayCnS4BTpX04xEsc8jrub-BgsYfGROHsY1zRM1U0yjkAVy-bb1__j0W_EEXen_0pzJg7b9Rbfiifwq73brN91XvoHTDvmhA priority: 102 providerName: Directory of Open Access Journals |
| Title | Stacked Sparse Autoencoder-Based Deep Network for Fault Diagnosis of Rotating Machinery |
| URI | https://ieeexplore.ieee.org/document/7983338 https://www.proquest.com/docview/2455934963 https://doaj.org/article/da13decb21fb43e09782631267e8200c |
| Volume | 5 |
| WOSCitedRecordID | wos000408176800019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZJ6KE99JWWbpsGHXqME73Wso6bTZYemqX0QXMTtjQugbBedr2FXvrbOyMrJtBS6MXYQjayP8maT5r5hrF3weK87oIqSleJwsgWika6tpgKSU4KMhhIOrMf7HJZXV-7j3vsZIyFAYDkfAandJr28mMXdrRUdmZdpZFS7bN9a8shVmtcT6EEEm5qs7CQFO5sNp_jO5D3lj1VlIWJomTvTT5Joz8nVfnjT5yml8WT_2vYU_Y4m5F8NuD-jO3B6jl7dE9c8JB9QzsSh2jkn9dIXoHPdn1HqpURNsU5zl2RXwCs-XLwA-dovPJFvbvt-cXgfXez5V3LP3W0V7_6zq-S1yVsfr5gXxeXX-bvi5xGoQhGVH3RNG1T6SDLGAMyUhn0tAKpq1qJWsoogmtJpQ0LTbTkJKNCa9EqizIqbQzol-xg1a3gFeNgQqxtCMKpYCokV3iNBgpyjsYpC3bC1N339SFrjFOqi1ufuIZwfgDFEyg-gzJhJ-NN60Fi49_Vzwm4sSrpY6cCRMTn4eZjLXWE0CjZNkYDBauoUktVWkCTR4QJOyQUx4dkACfs6K4b-DyWt14ZZF2kq69f__2uN-whNXBYmDliB_1mB2_Zg_Cjv9lujhPLx-PVr8vj1GV_A_iZ5j8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgcR44GtMKwzwA4_L5q_W8WPXUQ3RVQiG2JuV2Bc0aWqqNp3Ef4_PyaJJm5B4Syw7cvKzcx---x3AJ2-iXLdeZiOb80yLCrNS2CobckFBCsJrTDyzMzOf55eX9tsWHPa5MIiYgs_wiC7TWX6o_YZcZcfG5iqaVI_g8VBrydtsrd6jQiUk7NB01EKC2-PxZBLfguK3zJGkOkyUJ3tH_CSW_q6syr1_cRIw0xf_N7WX8LxTJNm4Rf4VbOHiNTy7Qy-4C7-iJhk3aWA_ltF8RTbeNDXxVgZcZSdRegV2irhk8zYSnEX1lU2LzXXDTtv4u6s1qyv2vabT-sVvdp7iLnH15w38nH6-mJxlXSGFzGueN1lZVmWuvBiF4KNNKrwa5ihUXkheCBG4txXxtMVGHQyFyUhfmaiXBRGk0hrVHmwv6gXuA0PtQ2G851Z6nUfzKt5HFSVaHaWVBs0A5O33db5jGadiF9cuWRvcuhYUR6C4DpQBHPaDli3Jxr-7nxBwfVdiyE4NERHXbTgXCqEC-lKKqtQKKV1FjpSQI4NR6eF-ALuEYv-QDsABHNwuA9ft5rWTOtpdxKyv3j486iM8Pbs4n7nZl_nXd7BDk23dNAew3aw2-B6e-Jvmar36kJbsXz3t52A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacked+Sparse+Autoencoder-Based+Deep+Network+for+Fault+Diagnosis+of+Rotating+Machinery&rft.jtitle=IEEE+access&rft.au=Qi%2C+Yumei&rft.au=Shen%2C+Changqing&rft.au=Wang%2C+Dong&rft.au=Shi%2C+Juanjuan&rft.date=2017-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=5&rft.spage=15066&rft.epage=15079&rft_id=info:doi/10.1109%2FACCESS.2017.2728010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2017_2728010 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |