An Encoder-Decoder Neural Network With 3D Squeeze-and-Excitation and Deep Supervision for Brain Tumor Segmentation
Brain tumor segmentation from medical images is a prerequisite to provide a quantitative and intuitive reference for clinical diagnosis and treatment. Manual segmentation depends on clinicians' experience, and is laborious and time-consuming. To tackle these issues, we proposed an encoder-decod...
Uloženo v:
| Vydáno v: | IEEE access Ročník 8; s. 34029 - 34037 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Brain tumor segmentation from medical images is a prerequisite to provide a quantitative and intuitive reference for clinical diagnosis and treatment. Manual segmentation depends on clinicians' experience, and is laborious and time-consuming. To tackle these issues, we proposed an encoder-decoder neural network, i.e. deep supervised 3D Squeeze-and-Excitation V-Net (DSSE-V-Net) to segment brain tumors automatically. We modified V-Net by adding batch normalization and using bottom residual block to make the network deeper. Then we incorporated a squeeze & excitation(SE) module in the modified V-Net by adding the SE block in each stage of the encoder and decoder, respectively. We also integrated 3D deep supervision seamlessly into the network to accelerate convergence. We evaluated our model on the public BraTS 2017 dataset for brain tumor segmentation. Our model outperformed both 3D U-Net and modified V-Net, and obtained highly competitive performance compared with those methods winning in the BraTS 2017 challenge. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2020.2973707 |