Ship Motion Attitude Prediction Based on an Adaptive Dynamic Particle Swarm Optimization Algorithm and Bidirectional LSTM Neural Network
A new neural network prediction model is proposed for predicting ship motion attitude with high accuracy. This prediction model is based on an adaptive dynamic particle swarm optimization algorithm (ADPSO) and bidirectional long short-term memory (BiLSTM) neural network, which is to optimize the hyp...
Saved in:
| Published in: | IEEE access Vol. 8; pp. 90087 - 90098 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A new neural network prediction model is proposed for predicting ship motion attitude with high accuracy. This prediction model is based on an adaptive dynamic particle swarm optimization algorithm (ADPSO) and bidirectional long short-term memory (BiLSTM) neural network, which is to optimize the hyperparameters of BiLSTM neural network by the proposed ADPSO algorithm. The ADPSO algorithm introduces dynamic search space strategy into the classical particle swarm optimization algorithm and adjusts the learning factor adaptively to balance the global and local search ability, so as to improve the optimization performance and improve its optimization effect in BiLSTM parameter optimization process. The results show that the model can obtain higher prediction accuracy and faster convergence speed, and has better prediction performance in the prediction of ship motion attitude. |
|---|---|
| AbstractList | A new neural network prediction model is proposed for predicting ship motion attitude with high accuracy. This prediction model is based on an adaptive dynamic particle swarm optimization algorithm (ADPSO) and bidirectional long short-term memory (BiLSTM) neural network, which is to optimize the hyperparameters of BiLSTM neural network by the proposed ADPSO algorithm. The ADPSO algorithm introduces dynamic search space strategy into the classical particle swarm optimization algorithm and adjusts the learning factor adaptively to balance the global and local search ability, so as to improve the optimization performance and improve its optimization effect in BiLSTM parameter optimization process. The results show that the model can obtain higher prediction accuracy and faster convergence speed, and has better prediction performance in the prediction of ship motion attitude. |
| Author | Tan, Feng Wu, Yanxia Zhang, Guoyin |
| Author_xml | – sequence: 1 givenname: Guoyin surname: Zhang fullname: Zhang, Guoyin organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China – sequence: 2 givenname: Feng orcidid: 0000-0002-5278-9539 surname: Tan fullname: Tan, Feng organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China – sequence: 3 givenname: Yanxia surname: Wu fullname: Wu, Yanxia email: wuyanxia@hrbeu.edu.cn organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China |
| BookMark | eNp9UU1vEzEQtVCRKKW_oBdLnBPstde7PqahpZXSD2nL2ZrYs63Dbhy8DlX5Bf3ZONmAEAd88ei9eU8z896To3VYIyFnnE05Z_rTbD6_aJppwQo2LbQWmuk35LjgSk9EKdTRX_U7cjoMK5ZfnaGyOiavzZPf0JuQfFjTWUo-bR3S-4jO2z12DgM6mgvIvINN8j-Qfn5ZQ-8tvYeYvO2QNs8Qe3qX2d7_hNGsewzRp6c-Kx09985H3FtCRxfNww29xW3M9S2m5xC_fSBvW-gGPD38J-Tr5cXD_GqyuPtyPZ8tJlayOk0AVIWVhiVftlYUQjBsmYC6dspBKZxVyla2BBAouQTWcsWl1ExVzDLJW3FCrkdfF2BlNtH3EF9MAG_2QIiP5rCUySdaSo2ILSrpynKJUOlaYlsXti6qOnt9HL02MXzf4pDMKmxjXnAwhSwlZ0yLXZceu2wMwxCxNdan_Y1SBN8ZzswuRzPmaHY5mkOOWSv-0f6e-P-qs1Hl8_B_FJnhvJLiF4grrIg |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s11804_025_00722_4 crossref_primary_10_3390_app12020757 crossref_primary_10_3390_jmse12050711 crossref_primary_10_1016_j_energy_2025_137206 crossref_primary_10_1007_s40722_022_00255_w crossref_primary_10_1016_j_ast_2024_108903 crossref_primary_10_1080_17445302_2024_2336675 crossref_primary_10_1109_TII_2021_3088404 crossref_primary_10_3390_su15043628 crossref_primary_10_3233_JIFS_210603 crossref_primary_10_1016_j_oceaneng_2025_122722 crossref_primary_10_1016_j_oceaneng_2024_118223 crossref_primary_10_1016_j_oceaneng_2024_119237 crossref_primary_10_1109_ACCESS_2021_3112973 crossref_primary_10_1109_TGRS_2024_3495662 crossref_primary_10_1051_jnwpu_20244230377 crossref_primary_10_1038_s41598_023_47416_x crossref_primary_10_3390_jmse13091792 crossref_primary_10_1002_adts_202100220 crossref_primary_10_1016_j_energy_2021_119887 crossref_primary_10_3390_jmse12020291 crossref_primary_10_1016_j_oceaneng_2022_113235 crossref_primary_10_1016_j_marstruc_2020_102928 crossref_primary_10_3390_w15071306 crossref_primary_10_1016_j_heliyon_2023_e21377 crossref_primary_10_1007_s12530_023_09496_y crossref_primary_10_1007_s11200_023_0134_y crossref_primary_10_1016_j_oceaneng_2024_118236 crossref_primary_10_1016_j_oceaneng_2022_110555 crossref_primary_10_1371_journal_pone_0310133 crossref_primary_10_1007_s13344_025_0016_7 crossref_primary_10_54392_irjmt2468 crossref_primary_10_1016_j_ress_2023_109572 crossref_primary_10_3390_electronics13173555 crossref_primary_10_1007_s13369_024_09921_7 crossref_primary_10_1016_j_oceaneng_2024_117428 crossref_primary_10_3390_jmse9040387 crossref_primary_10_4173_mic_2021_1_2 crossref_primary_10_1016_j_apor_2023_103701 crossref_primary_10_3389_fenrg_2023_1211360 crossref_primary_10_1007_s13369_022_06655_2 crossref_primary_10_3390_electronics10212689 crossref_primary_10_1080_15435075_2022_2143272 crossref_primary_10_1109_ACCESS_2023_3298649 crossref_primary_10_3390_jmse10060804 crossref_primary_10_4018_IJICTE_344427 crossref_primary_10_3390_rs13112164 crossref_primary_10_1002_cpe_8241 crossref_primary_10_1007_s13344_023_0085_4 crossref_primary_10_1016_j_oceaneng_2020_108503 crossref_primary_10_1080_1064119X_2024_2449235 crossref_primary_10_3390_jmse11050919 crossref_primary_10_1016_j_oceaneng_2022_112876 |
| Cites_doi | 10.1109/ACCESS.2020.2971348 10.1007/s00500-016-2116-z 10.1177/0142331217716983 10.1109/78.650093 10.1016/j.asoc.2018.09.013 10.1162/tacl_a_00105 10.1109/CEC.2004.1330875 10.1109/OCEANS.1981.1151574 10.1016/j.marstruc.2017.10.012 10.1109/ITAIC.2019.8785751 10.1002/mma.4565 10.1109/CEC.2019.8790060 10.1109/CISCE.2019.00113 10.2514/3.62814 10.18653/v1/N18-1132 10.1177/0142331219860731 10.1007/978-3-319-70093-9_5 10.1109/GNCC42960.2018.9018688 10.1162/neco.1997.9.8.1735 10.1109/TII.2018.2811377 10.1109/ICCCNT45670.2019.8944827 10.1016/j.swevo.2017.09.001 10.1109/CCDC.2017.7978772 10.1049/el.2017.2112 10.1109/ITNEC.2019.8729441 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2020.2993909 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore Digital Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 90098 |
| ExternalDocumentID | oai_doaj_org_article_169b49eeefe64d55bea7984ef82c8278 10_1109_ACCESS_2020_2993909 9091174 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Foundation for Distinguished Young Scholars of Harbin grantid: 2017RAYXJ016 – fundername: Natural Science Foundation of Heilongjiang Province grantid: F2018008 funderid: 10.13039/501100005046 – fundername: Fundamental Research Funds for the Central Universities grantid: 3072019CFT0602 funderid: 10.13039/501100012226 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-aa67e79ab1bfc32330ef03a88d6da53dc66c7c5aa3e414a0f1614490670c041f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538727700097&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:24 EDT 2025 Sun Nov 30 04:02:54 EST 2025 Sat Nov 29 02:42:24 EST 2025 Tue Nov 18 22:35:07 EST 2025 Wed Aug 27 02:39:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-aa67e79ab1bfc32330ef03a88d6da53dc66c7c5aa3e414a0f1614490670c041f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5278-9539 |
| OpenAccessLink | https://doaj.org/article/169b49eeefe64d55bea7984ef82c8278 |
| PQID | 2454100938 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_169b49eeefe64d55bea7984ef82c8278 proquest_journals_2454100938 ieee_primary_9091174 crossref_citationtrail_10_1109_ACCESS_2020_2993909 crossref_primary_10_1109_ACCESS_2020_2993909 |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 reimers (ref18) 2017 ref2 ref17 ref16 ref19 wang (ref7) 2017; 39 ref24 ref23 ref26 ref25 ref20 ref22 ref28 ref27 xingjian (ref21) 2017; 58 ref29 ref8 ref9 ref4 ref3 ref6 hao (ref1) 2016; 27 ref5 |
| References_xml | – ident: ref13 doi: 10.1109/ACCESS.2020.2971348 – ident: ref26 doi: 10.1007/s00500-016-2116-z – ident: ref25 doi: 10.1177/0142331217716983 – ident: ref14 doi: 10.1109/78.650093 – ident: ref23 doi: 10.1016/j.asoc.2018.09.013 – ident: ref17 doi: 10.1162/tacl_a_00105 – ident: ref29 doi: 10.1109/CEC.2004.1330875 – volume: 58 start-page: 100 year: 2017 ident: ref21 article-title: Research on short-term prediction of typical trial sea environment in China based on LSTM neural network publication-title: Shipbuild China – ident: ref5 doi: 10.1109/OCEANS.1981.1151574 – ident: ref4 doi: 10.1016/j.marstruc.2017.10.012 – ident: ref12 doi: 10.1109/ITAIC.2019.8785751 – volume: 39 start-page: 69 year: 2017 ident: ref7 article-title: Short-term prediction of ship motion based on LSTM publication-title: Ship Science and Technology – ident: ref3 doi: 10.1002/mma.4565 – ident: ref16 doi: 10.1109/CEC.2019.8790060 – ident: ref11 doi: 10.1109/CISCE.2019.00113 – ident: ref2 doi: 10.2514/3.62814 – ident: ref19 doi: 10.18653/v1/N18-1132 – ident: ref8 doi: 10.1177/0142331219860731 – ident: ref20 doi: 10.1007/978-3-319-70093-9_5 – ident: ref24 doi: 10.1109/GNCC42960.2018.9018688 – year: 2017 ident: ref18 article-title: Optimal hyperparameters for deep LSTM-networks for sequence labeling tasks publication-title: arXiv 1707 06799 – volume: 27 start-page: 13 year: 2016 ident: ref1 article-title: Design of the deck longitudinal motion compensation for carrier landing publication-title: Aeronautical Science and Technology – ident: ref15 doi: 10.1162/neco.1997.9.8.1735 – ident: ref22 doi: 10.1109/TII.2018.2811377 – ident: ref10 doi: 10.1109/ICCCNT45670.2019.8944827 – ident: ref28 doi: 10.1016/j.swevo.2017.09.001 – ident: ref6 doi: 10.1109/CCDC.2017.7978772 – ident: ref27 doi: 10.1049/el.2017.2112 – ident: ref9 doi: 10.1109/ITNEC.2019.8729441 |
| SSID | ssj0000816957 |
| Score | 2.4126449 |
| Snippet | A new neural network prediction model is proposed for predicting ship motion attitude with high accuracy. This prediction model is based on an adaptive dynamic... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 90087 |
| SubjectTerms | Adaptive algorithms ADPSO algorithm Attitudes BiLSTM neural network Heuristic algorithms Logic gates Machine learning Marine vehicles Model accuracy Neural networks Optimization algorithms Particle swarm optimization prediction accuracy Prediction algorithms Prediction models Predictions Predictive models Process parameters Ship motion Ship motion attitude |
| SummonAdditionalLinks | – databaseName: IEEE Xplore Digital Library dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbaigMceBXUhYJ84Ni0SWwn9nF324oDXVbaIvVm-TGhK3UfSlP4C_3ZHTtuBAIhcbNsTzTJN_F4xp4ZQj6VViovHM8qVtqMc8UyKyXPSlcYZwXUuTOx2EQ9m8mrKzXfIUdDLAwAxMtncBya8Szfb9xdcJWdKFRuuIPeJbt1XfWxWoM_JRSQUKJOiYWKXJ2Mp1N8BzQBy_wYF1007tVvyifm6E9FVf5YiaN6OX_xf4y9JM_TNpKOe9xfkR1YvybPfkkuuE_uF9fLLb2IVXrouAtXAjzQeRtOZmLfBBWYp9gwOO7NNix89LSvUE_nSaTo4qdpV_Qrjq5SyCYd33zftMvueoWUnk6WvVqMPkX6ZXF5QUPGD2zP-ivmb8i387PL6ecs1V3IHM9llxlT1VArYwvbOFYylkOTMyOlr7wRzLuqcrUTxjDgBTd5UwSrUoWIH5fzomFvyd56s4YDQp1AesHCUQ-aYuAVqMY0jYXKo2IEOyLlIyDapaTkoTbGjY7GSa50j6IOKOqE4ogcDUTbPifHv6dPAtLD1JBQO3YghDp9TI3CY5FBgAYq7oWwYJBnDo0snSxrOSL7AfbhIQnxETl8lBudfv5bXXLBi-Aqku_-TvWePA0M9p6cQ7LXtXfwgTxxP7rlbfsxyvUDZpL3nA priority: 102 providerName: IEEE |
| Title | Ship Motion Attitude Prediction Based on an Adaptive Dynamic Particle Swarm Optimization Algorithm and Bidirectional LSTM Neural Network |
| URI | https://ieeexplore.ieee.org/document/9091174 https://www.proquest.com/docview/2454100938 https://doaj.org/article/169b49eeefe64d55bea7984ef82c8278 |
| Volume | 8 |
| WOSCitedRecordID | wos000538727700097&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQxQEOCCiIQKl84MhSe22v7WMSWnEgIVKK1JvlJ43UpNF2aW-c-dn41SgICS5cVtba4117Zmd2bM83ALxrjZCOWdp0pDUNpZI0RgjatBZra5jnyOqcbILP5-LiQi72Un2lM2EFHrhM3AnupKHSex98Rx1jxmsuBfVBtFa0PIf5Ii73nKmsg0WkY7zCDGEkT8bTaRxRdAhb9CGq4Ojqy99MUUbsrylW_tDL2dicPQVP6l8iHJe3ewYe-M1z8HgPO_AQ_FxerrZwlpPwwPGQdvydh4s-bbzke5NonxyMBR3rnd4mvQY_lgT0cFEHDpd3ul_DL7F2XSMy4fjq23W_Gi7XkdLByapYvbxkCD8vz2cwAXrE8rycIH8Bvp6dnk8_NTWtQmMpEkOjdcc9l9pgEyxpCUE-IKKFcJ3TjDjbdZZbpjXxFFONAk5Oo0wBPRZRHMhLcLC53vhXAFoW6RlJOznR0_JOehl0CMZ3Lto9b0agvZ9hZSvmeEp9caWy74GkKmxRiS2qsmUE3u-ItgVy4-_NJ4l1u6YJLzvfiFKk6mSqf0nRCBwmxu86if3i6KuNwNG9IKj6bd-oljKK00qQeP0_Hv0GPErDKcs6R-Bg6L_7t-ChvR1WN_1xFut4nf04Pc7Bib8AQkH9fQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKQQIOvApioYAPHJvW8SOxj7sLVRG7y0q7SL1Zjj1pV-o-lKbwF_jZ2I4bgUBI3CzbE03yTTyesWcGofe0ksoJy7OC0SrjXLGskpJn1ObGVgJKYk0sNlHOZvL8XM330FEfCwMA8fIZHIdmPMt3W3sTXGUnyis3v4O-g-4KzinporV6j0ooIaFEmVIL5USdDMdj_xbeCKTk2C-73rxXv6mfmKU_lVX5Yy2OCub08f-x9gQ9ShtJPOyQf4r2YPMMPfwlveAB-rG4XO3wNNbpwcM2XApwgOdNOJuJfSOvwhz2DePHndmFpQ9_6GrU43kSKrz4bpo1_uJH1yloEw-vLrbNqr1ce0qHR6tOMUavIp4sllMccn749qy7ZP4cfT39uByfZanyQmY5kW1mTFFCqUyVV7VllDECNWFGSlc4I5izRWFLK4xhwHNuSJ0Hu1KFmB9LeF6zF2h_s93AS4St8PSChcMeb4yBU6BqU9cVFM6rRqgGiN4Com1KSx6qY1zpaJ4QpTsUdUBRJxQH6Kgn2nVZOf49fRSQ7qeGlNqxw0Oo08fUXngqzyBADQV3QlRgPM8cakmtpKUcoIMAe_-QhPgAHd7KjU6__7WmXPA8OIvkq79TvUP3z5bTiZ58mn1-jR4EZju_ziHab5sbeIPu2W_t6rp5G2X8J2Wn-uM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ship+Motion+Attitude+Prediction+Based+on+an+Adaptive+Dynamic+Particle+Swarm+Optimization+Algorithm+and+Bidirectional+LSTM+Neural+Network&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Guoyin&rft.au=Tan%2C+Feng&rft.au=Wu%2C+Yanxia&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=90087&rft.epage=90098&rft_id=info:doi/10.1109%2FACCESS.2020.2993909&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_2993909 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |