An Improved Sarsa( \lambda ) Reinforcement Learning Algorithm for Wireless Communication Systems

In this article, we provide a novel improved model-free temporal-difference control algorithm, namely, Expected Sarsa(λ), using the average value as an update target and introducing eligibility traces in wireless communication networks. In particular, we construct the update target using the average...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 7; S. 115418 - 115427
Hauptverfasser: Jiang, Hao, Gui, Renjie, Chen, Zhen, Wu, Liang, Dang, Jian, Zhou, Jie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we provide a novel improved model-free temporal-difference control algorithm, namely, Expected Sarsa(λ), using the average value as an update target and introducing eligibility traces in wireless communication networks. In particular, we construct the update target using the average action value of all possible successive actions, and apply eligibility traces to record the historical access of every state action pair, which greatly improve the model's convergence property and learning efficiency. Numerical results demonstrate that the proposed algorithm has the advantage of high learning efficiency and a higher learning-rate tolerance range than Q Learning, Sarsa, Expected Sarsa, and Sarsa(λ) in the tabular case of a finite Markov decision process, thereby providing an efficient solution for the study and design wireless communication networks. This provides an efficient and effective solution to design further artificial intelligent communication networks.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2935255