Hybrid of Harmony Search Algorithm and Ring Theory-Based Evolutionary Algorithm for Feature Selection

Feature Selection (FS) is an important pre-processing step in the fields of machine learning and data mining, which has a major impact on the performance of the corresponding learning models. The main goal of FS is to remove the irrelevant and redundant features, resulting in optimized time and spac...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 8; s. 102629 - 102645
Hlavní autori: Ahmed, Shameem, Ghosh, Kushal Kanti, Singh, Pawan Kumar, Geem, Zong Woo, Sarkar, Ram
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Feature Selection (FS) is an important pre-processing step in the fields of machine learning and data mining, which has a major impact on the performance of the corresponding learning models. The main goal of FS is to remove the irrelevant and redundant features, resulting in optimized time and space requirements along with enhanced performance of the learning model under consideration. Many meta-heuristic optimization techniques have been applied to solve FS problems because of its superiority over the traditional optimization approaches. Here, we have introduced a new hybrid meta-heuristic FS model based on a well-known meta-heuristic Harmony Search (HS) algorithm and a recently proposed Ring Theory based Evolutionary Algorithm (RTEA), which we have named as Ring Theory based Harmony Search (RTHS). Effectiveness of RTHS has been evaluated by applying it on 18 standard UCI datasets and comparing it with 10 state-of-the-art meta-heuristic FS methods. Obtained results prove the superiority of RTHS over the state-of-the-art methods considered here for comparison.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2999093