A Novel Dynamic Fingerprint Segmentation Method Based on Fuzzy C-Means and Genetic Algorithm
In automatic fingerprint identification system (AFIS), fingerprint segmentation plays a crucial role in improving detection accuracy and reducing the computation time of feature extraction. With the goal of refining performance of AFIS, in this paper, we investigate a novel dynamic fingerprint segme...
Uloženo v:
| Vydáno v: | IEEE access Ročník 8; s. 132694 - 132702 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In automatic fingerprint identification system (AFIS), fingerprint segmentation plays a crucial role in improving detection accuracy and reducing the computation time of feature extraction. With the goal of refining performance of AFIS, in this paper, we investigate a novel dynamic fingerprint segmentation algorithm. The proposed algorithm is based on the existed dynamic image segmentation algorithm using fuzzy c-means (FCM) and genetic algorithm. Specifically, relying on different gray level of histogram and improved post-processing method, we establish a well-performed fingerprint segmentation system. The extensive results from our empirical experiments demonstrate the high performance of our proposed dynamic fingerprint segmentation algorithm, and its better performance than other competing approaches. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2020.3011025 |