Deterministic Autoencoder using Wasserstein loss for tabular data generation
Tabular data generation is a complex task due to its distinctive characteristics and inherent complexities. While Variational Autoencoders have been adapted from the computer vision domain for tabular data synthesis, their reliance on non-deterministic latent space regularization introduces limitati...
Uložené v:
| Vydané v: | Neural networks Ročník 185; s. 107208 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Ltd
01.05.2025
|
| Predmet: | |
| ISSN: | 0893-6080, 1879-2782, 1879-2782 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!