Iterative Reconstrained Low-Rank Representation via Weighted Nonconvex Regularizer
Benefiting from the joint consideration of geometric structures and low-rank constraint, graph low-rank representation (GLRR) method has led to the state-of-the-art results in many applications. However, it faces the limitations that the structure of errors should be known a prior, the isolated cons...
Saved in:
| Published in: | IEEE access Vol. 6; pp. 51693 - 51707 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!