Many-Objective Cloud Task Scheduling

Task scheduling problem refers to how to reasonably arrange many tasks provided by users in virtual machines, which is very important in the cloud computing. And the quality of the scheduling performance directly affects the customer satisfaction and the provider benefits. In order to describe the t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 8; pp. 79079 - 79088
Main Authors: Geng, Shaojin, Wu, Di, Wang, Penghong, Cai, Xingjuan
Format: Journal Article
Language:English
Published: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Task scheduling problem refers to how to reasonably arrange many tasks provided by users in virtual machines, which is very important in the cloud computing. And the quality of the scheduling performance directly affects the customer satisfaction and the provider benefits. In order to describe the task scheduling problem of cloud computing more precisely and improve the scheduling performance. This paper establishes many-objective cloud model, including four objectives: minimizing time, minimizing costs, maximizing resource utilization, and balancing load. At the same time, a many-objective optimization algorithm based on hybrid angles (MaOEA-HA) is proposed to solve this model. Hybrid angle strategy is designed to optimize the algorithm better, which combines two angle strategies: individual-to-individual angle and individual-to-reference point angle. One by one elimination strategy was introduced to remain individuals with better performance. By comparing with five other advanced many-objective optimization algorithms, MaOEA-HA shows the best performance on the DTLZ test suite. Moreover, different algorithms are applied to solve the cloud task scheduling problem, and MaOEA-HA algorithm achieves best results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2990500