Online Offloading Scheduling and Resource Allocation Algorithms for Vehicular Edge Computing System
To accommodate the exponentially increasing computation demands of vehicle-based applications, vehicular edge computing (VEC) system was introduced. This paper considers a three-layer VEC architecture and proposes an online offloading scheduling and resource allocation (OOSRA) algorithm to improve t...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 8; S. 52428 - 52442 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | To accommodate the exponentially increasing computation demands of vehicle-based applications, vehicular edge computing (VEC) system was introduced. This paper considers a three-layer VEC architecture and proposes an online offloading scheduling and resource allocation (OOSRA) algorithm to improve the system performance. Specifically, this study designs a game-theoretic online algorithm to solve the problem of computation task offloading scheduling, and employs an online bin-packing algorithm to compute the resource allocation modified from the First Fit algorithm, which can be adapted to various traffic flow and service attributes. Extensive simulations are conducted, and a numerical analysis of simulation results verifies the effectiveness of the OOSRA-VEC system. The algorithms proposed in this paper are online, adaptive, and distributed, which can provide useful references for future development in VEC system protocols. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2020.2981045 |