Chaos and elite reverse learning – Enhanced sparrow search algorithm for IIoT sensing communication optimization

Sensing, communication, and collaborative optimization are currently hot topics in the Industrial Internet of Things (IIoT) research. This paper addresses minimizing energy consumption in IIoT user terminal devices by modeling energy consumption as an optimization challenge. Initially, a data - awar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alexandria engineering journal Jg. 125; S. 663 - 676
Hauptverfasser: Wang, Yongmei, Li, Junyong, Tan, Xiaoyun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.06.2025
Elsevier
Schlagworte:
ISSN:1110-0168
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sensing, communication, and collaborative optimization are currently hot topics in the Industrial Internet of Things (IIoT) research. This paper addresses minimizing energy consumption in IIoT user terminal devices by modeling energy consumption as an optimization challenge. Initially, a data - aware sharing architecture for IIoT user terminal devices is constructed to reduce device energy consumption. In scenarios involving multiple intelligent terminal devices, collaborative devices, and edge IIoT proxy devices, factors such as user device location stability, local network status, task arrival rate, and queue stability are comprehensively considered. Subsequently, this paper introduces a Chaos and Elite Reverse Learning Sparrow Search Algorithm (CERL-SSA) to solve the established model. The testing experiments use common benchmark functions to verify the superiority of the improved algorithm, and the experimental results show the good performance and effectiveness of the proposed algorithm in IIoT sensing communication and collaborative optimization.
ISSN:1110-0168
DOI:10.1016/j.aej.2025.04.054