Convergence performance analysis of an adaptive kernel width MCC algorithm

A fixed kernel width in MCC algorithm imposes a trade-off among robustness, convergence rate and steady-state accuracy. With a variable kernel width, the adaptive kernel width MCC (AMCC) algorithm can improve the learning speed of the MCC algorithm especially when the initial weight vector is far aw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electronics and communications Jg. 76; S. 71 - 76
Hauptverfasser: Wang, Weihua, Zhao, Jihong, Qu, Hua, Chen, Badong, Principe, Jose C.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier GmbH 01.06.2017
Schlagworte:
ISSN:1434-8411, 1618-0399
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A fixed kernel width in MCC algorithm imposes a trade-off among robustness, convergence rate and steady-state accuracy. With a variable kernel width, the adaptive kernel width MCC (AMCC) algorithm can improve the learning speed of the MCC algorithm especially when the initial weight vector is far away from the optimal weight vector. In this paper, the steady-state excess mean square error (EMSE) of the AMCC algorithm is studied based on energy conservation relation. In addition, a novel convergence measure called initial convergence rate is introduced to evaluate the convergence speed at the beginning of the learning. Simulation experiments are carried out to verify the theoretical analysis and confirm the desirable performance of the AMCC algorithm in several different non-Gaussian noise environments.
AbstractList A fixed kernel width in MCC algorithm imposes a trade-off among robustness, convergence rate and steady-state accuracy. With a variable kernel width, the adaptive kernel width MCC (AMCC) algorithm can improve the learning speed of the MCC algorithm especially when the initial weight vector is far away from the optimal weight vector. In this paper, the steady-state excess mean square error (EMSE) of the AMCC algorithm is studied based on energy conservation relation. In addition, a novel convergence measure called initial convergence rate is introduced to evaluate the convergence speed at the beginning of the learning. Simulation experiments are carried out to verify the theoretical analysis and confirm the desirable performance of the AMCC algorithm in several different non-Gaussian noise environments.
Author Zhao, Jihong
Chen, Badong
Principe, Jose C.
Qu, Hua
Wang, Weihua
Author_xml – sequence: 1
  givenname: Weihua
  surname: Wang
  fullname: Wang, Weihua
  organization: School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 2
  givenname: Jihong
  surname: Zhao
  fullname: Zhao, Jihong
  organization: School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 3
  givenname: Hua
  surname: Qu
  fullname: Qu, Hua
  organization: School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 4
  givenname: Badong
  surname: Chen
  fullname: Chen, Badong
  email: chenbd@mail.xjtu.edu.cn
  organization: School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 5
  givenname: Jose C.
  surname: Principe
  fullname: Principe, Jose C.
  organization: School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
BookMark eNp9kMtOwzAQAC0EEm3hBzjlBxLWjvOSuKCIp4q4wNna2JvWJY0rOxT170lUThx62jnsrLQzZ-e964mxGw4JB57fbhKkb0oE8CKBNAFRnrEZz3kZQ1pV5yPLVMal5PySzUPYAAgoRD5jr7Xr9-RX1GuKduRb57c4MfbYHYINkWtHjtDgbrB7ir7I99RFP9YM6-itriPsVs7bYb29YhctdoGu_-aCfT4-fNTP8fL96aW-X8ZaQjHEhcg0QlZVnBoqCwFIaFpZkqx4U4CRGqVoTDPukNStaLnJUkwzKLI8RTDpgonjXe1dCJ5atfN2i_6gOKiphtqoqYaaaihI1VhjlMp_krYDDtb1g0fbnVbvjiqNT-0teRW0nXoZ60kPyjh7Sv8F1pJ-GA
CitedBy_id crossref_primary_10_1016_j_sigpro_2020_107589
crossref_primary_10_1109_ACCESS_2020_2984494
crossref_primary_10_1109_ACCESS_2019_2959919
crossref_primary_10_3390_rs14153677
crossref_primary_10_1016_j_sigpro_2020_107948
crossref_primary_10_1007_s11760_024_03712_1
crossref_primary_10_3390_e22090922
crossref_primary_10_3390_e20120902
crossref_primary_10_1016_j_aeue_2019_153033
crossref_primary_10_1109_LSP_2018_2873413
crossref_primary_10_1186_s13634_019_0652_2
crossref_primary_10_1109_TCSII_2017_2778038
crossref_primary_10_1109_ACCESS_2018_2875141
crossref_primary_10_1002_ett_3605
crossref_primary_10_1016_j_dsp_2018_04_011
crossref_primary_10_1049_iet_rsn_2019_0223
crossref_primary_10_1109_TII_2023_3240722
crossref_primary_10_1007_s00034_022_02004_8
crossref_primary_10_1016_j_asr_2024_05_072
crossref_primary_10_1016_j_sigpro_2018_04_017
crossref_primary_10_1007_s11760_021_01956_9
crossref_primary_10_1186_s13173_021_00111_z
Cites_doi 10.1016/j.sigpro.2016.04.003
10.1109/TSP.2016.2539127
10.1109/TSP.2006.872524
10.1016/j.neucom.2006.07.001
10.1109/LSP.2012.2204435
10.1002/acs.2536
10.1093/biomet/71.2.353
10.3390/e18100380
10.1109/TASSP.1987.1165167
10.1109/5.231338
10.1016/j.aeue.2016.04.001
10.1109/78.902113
10.1016/j.sigpro.2010.06.023
10.1155/S1110865701000348
10.1109/TSP.2007.896065
10.1080/01621459.1996.10476701
10.1109/CC.2013.6457536
10.1109/TIT.1984.1056886
10.1109/97.295321
10.1109/49.753731
10.1109/LSP.2015.2428713
10.1109/LSP.2007.894971
10.1016/j.aeue.2016.05.010
10.1049/el.2016.1944
10.1109/78.403344
10.1109/LSP.2014.2319308
10.1049/cje.2016.06.019
10.1109/78.286951
ContentType Journal Article
Copyright 2017 Elsevier GmbH
Copyright_xml – notice: 2017 Elsevier GmbH
DBID AAYXX
CITATION
DOI 10.1016/j.aeue.2017.03.028
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1618-0399
EndPage 76
ExternalDocumentID 10_1016_j_aeue_2017_03_028
S1434841116314765
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
3V.
4.4
457
4G.
5GY
5VS
7-5
71M
8FE
8FG
8FW
8P~
8R4
8R5
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABLJU
ABMAC
ABUWG
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKRA
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARAPS
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BENPR
BGLVJ
BJAXD
BKOJK
BLXMC
BPHCQ
CAG
CCPQU
COF
CS3
DWQXO
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HCIFZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M1Q
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P62
PC.
PQQKQ
PROAC
Q2X
Q38
R2-
RIG
ROL
RPZ
S0X
SDF
SDG
SES
SEW
SPC
SST
SSV
SSW
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFFHD
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
PHGZM
PHGZT
PQGLB
~HD
ID FETCH-LOGICAL-c407t-725ca05991ebe8720aeadf48e491b70d4ca42bdba05e4cf2f1d53a3507563a0d3
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000401596900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1434-8411
IngestDate Tue Nov 18 21:59:30 EST 2025
Sat Nov 29 02:47:06 EST 2025
Fri Feb 23 02:33:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Maximum correntropy criterion
Adaptive kernel width
Convergence performance analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-725ca05991ebe8720aeadf48e491b70d4ca42bdba05e4cf2f1d53a3507563a0d3
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_aeue_2017_03_028
crossref_citationtrail_10_1016_j_aeue_2017_03_028
elsevier_sciencedirect_doi_10_1016_j_aeue_2017_03_028
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationTitle International journal of electronics and communications
PublicationYear 2017
Publisher Elsevier GmbH
Publisher_xml – name: Elsevier GmbH
References Li, Wang, Jiang (b0020) 2016; 128
Li, Seshadri, Ariyavisitakul (b0205) 1999; 17
Silverman (b0110) 1986
Guan, Adachi (b0200) 2013; 2013
Walach, Widrow (b0175) 1984; 30
Chen, Wang, Zhao, Zheng, Principe (b0075) 2015; 22
Qu, Ma, Zhao, Wang (b0085) 2013; 10
Singh, Ncipe (b0125) 2011; 91
Singh, Principe (b0195) 2010
Chen, Xing, Liang, Zheng, Principe (b0155) 2014; 21
Barros, Principe, Takeuchi, Sales, Ohnishi (b0190) 2006; 70
Kim, Efron (b0040) 1995; 43
Zhao, Chen, Principe (b0135) 2012
Mathews, Cho (b0030) 1987; 35
Singh, Principe (b0080) 2009
Chen, Zhu, Hu, Principe (b0050) 2013
Principe (b0045) 2010
Paiva, Prncipe (b0130) 2010
Li, Wang, Jiang (b0025) 2016; 70
Li, Jin, Wang, Yang (b0105) 2016; 18
Santamara, Pokharel, Principe (b0060) 2006; 54
Douglas, Meng (b0180) 1994; 42
Farhang-Boroujeny (b0005) 1998
Wang, Zhao, Qu, Chen, Principe (b0140) 2015
Santana, Barros, Freire (b0185) 2007; 14
Liu, Pokharel, Principe (b0065) 2007; 55
Li, Hamamura (b0015) 2015; 29
Chen, Principe (b0070) 2012; 19
Jones, Marron, Sheather (b0115) 1996; 91
Douglas (b0010) 1994; 1
Widrow, Stearns (b0170) 1985
Li, Wang (b0100) 2016; 52
Chen, Xing, Zhao, Zheng, Principe (b0090) 2016; 64
Wang, Zhao, Qu, Chen, Principe (b0145) 2015
Shao, Nikias (b0035) 1993; 81
Yousef, Sayed (b0160) 2001; 49
Liu, Qi, Ding (b0095) 2016; 25
Kar, Swamy (b0165) 2016; 70
Rana, Hosain (b0210) 2011; 1
Al-Naffouri, Sayed (b0150) 2001; 2001
Bowman (b0120) 1984; 71
Liu, Pokharel, Principe (b0055) 2006
Douglas (10.1016/j.aeue.2017.03.028_b0180) 1994; 42
Li (10.1016/j.aeue.2017.03.028_b0100) 2016; 52
Douglas (10.1016/j.aeue.2017.03.028_b0010) 1994; 1
Mathews (10.1016/j.aeue.2017.03.028_b0030) 1987; 35
Shao (10.1016/j.aeue.2017.03.028_b0035) 1993; 81
Walach (10.1016/j.aeue.2017.03.028_b0175) 1984; 30
Silverman (10.1016/j.aeue.2017.03.028_b0110) 1986
Wang (10.1016/j.aeue.2017.03.028_b0140) 2015
Yousef (10.1016/j.aeue.2017.03.028_b0160) 2001; 49
Santamara (10.1016/j.aeue.2017.03.028_b0060) 2006; 54
Widrow (10.1016/j.aeue.2017.03.028_b0170) 1985
Chen (10.1016/j.aeue.2017.03.028_b0050) 2013
Liu (10.1016/j.aeue.2017.03.028_b0095) 2016; 25
Principe (10.1016/j.aeue.2017.03.028_b0045) 2010
Li (10.1016/j.aeue.2017.03.028_b0015) 2015; 29
Singh (10.1016/j.aeue.2017.03.028_b0195) 2010
Farhang-Boroujeny (10.1016/j.aeue.2017.03.028_b0005) 1998
Al-Naffouri (10.1016/j.aeue.2017.03.028_b0150) 2001; 2001
Qu (10.1016/j.aeue.2017.03.028_b0085) 2013; 10
Paiva (10.1016/j.aeue.2017.03.028_b0130) 2010
Chen (10.1016/j.aeue.2017.03.028_b0155) 2014; 21
Li (10.1016/j.aeue.2017.03.028_b0025) 2016; 70
Jones (10.1016/j.aeue.2017.03.028_b0115) 1996; 91
Chen (10.1016/j.aeue.2017.03.028_b0070) 2012; 19
Li (10.1016/j.aeue.2017.03.028_b0020) 2016; 128
Chen (10.1016/j.aeue.2017.03.028_b0075) 2015; 22
Liu (10.1016/j.aeue.2017.03.028_b0065) 2007; 55
Bowman (10.1016/j.aeue.2017.03.028_b0120) 1984; 71
Wang (10.1016/j.aeue.2017.03.028_b0145) 2015
Li (10.1016/j.aeue.2017.03.028_b0205) 1999; 17
Singh (10.1016/j.aeue.2017.03.028_b0125) 2011; 91
Li (10.1016/j.aeue.2017.03.028_b0105) 2016; 18
Singh (10.1016/j.aeue.2017.03.028_b0080) 2009
Guan (10.1016/j.aeue.2017.03.028_b0200) 2013; 2013
Barros (10.1016/j.aeue.2017.03.028_b0190) 2006; 70
Kar (10.1016/j.aeue.2017.03.028_b0165) 2016; 70
Zhao (10.1016/j.aeue.2017.03.028_b0135) 2012
Kim (10.1016/j.aeue.2017.03.028_b0040) 1995; 43
Liu (10.1016/j.aeue.2017.03.028_b0055) 2006
Rana (10.1016/j.aeue.2017.03.028_b0210) 2011; 1
Chen (10.1016/j.aeue.2017.03.028_b0090) 2016; 64
Santana (10.1016/j.aeue.2017.03.028_b0185) 2007; 14
References_xml – volume: 70
  start-page: 9
  year: 2006
  end-page: 13
  ident: b0190
  article-title: Using non-linear even functions for error minimization in adaptive filters
  publication-title: Neurocomputing
– start-page: 1
  year: 2012
  end-page: 5
  ident: b0135
  article-title: An adaptive kernel width update for correntropy
  publication-title: Proc. IEEE International Joint Conference on Neural Networks, (IJCNN’12), Brisbane, Australia
– volume: 1
  start-page: 552
  year: 2011
  end-page: 556
  ident: b0210
  article-title: Adaptive channel estimation techniques for MIMO OFDM systems
  publication-title: Int J Adv Comput Sci Appl
– volume: 128
  start-page: 243
  year: 2016
  end-page: 251
  ident: b0020
  article-title: Norm-adaption penalized least mean square/fourth algorithm for sparse channel estimation
  publication-title: Signal Process
– volume: 25
  start-page: 719
  year: 2016
  end-page: 725
  ident: b0095
  article-title: The data-reusing MCC-based algorithm and its performance analysis
  publication-title: Chinese J Electron
– volume: 70
  start-page: 895
  year: 2016
  end-page: 902
  ident: b0025
  article-title: Sparse-aware set-membership NLMS algorithms and their application for sparse channel estimation and echo cancelation
  publication-title: AEU-Int J Electron Commun
– start-page: 4919
  year: 2006
  ident: b0055
  article-title: Correntropy: A localized similarity measure
  publication-title: IEEE international Joint Conference on Neural Networks, (IJCNN’06), Vancouver, BC, Canada
– volume: 2001
  start-page: 192
  year: 2001
  end-page: 205
  ident: b0150
  article-title: Adaptive filters with error non-linearities: Mean-square analysis and optimum design
  publication-title: EURASIP J Adv Signal Process
– volume: 18
  start-page: 380
  year: 2016
  ident: b0105
  article-title: A robust sparse adaptive filtering algorithm with a correntropy induced metric constraint for broadband multi-path channel estimation
  publication-title: Entropy
– volume: 64
  start-page: 3376
  year: 2016
  end-page: 3387
  ident: b0090
  article-title: Generalized correntropy for robust adaptive filtering
  publication-title: IEEE Trans Signal Process
– volume: 30
  start-page: 275
  year: 1984
  end-page: 283
  ident: b0175
  article-title: The least mean fourth (LMF) adaptive algorithm and its family
  publication-title: IEEE Trans Inf Theory
– start-page: 2950
  year: 2009
  end-page: 2955
  ident: b0080
  article-title: Using correntropy as a cost function in linear adaptive filters
  publication-title: Proc. IEEE International Joint Conference on Neural Networks, (IJCNN’09), Atlanta, USA
– volume: 1
  start-page: 49C51
  year: 1994
  ident: b0010
  article-title: A family of normalized LMS algorithms
  publication-title: IEEE Signal Process Lett
– year: 1985
  ident: b0170
  article-title: Adaptive signal processing
– volume: 14
  start-page: 533
  year: 2007
  end-page: 536
  ident: b0185
  article-title: On the time constant under general error criterion
  publication-title: IEEE Signal Process Lett
– volume: 43
  start-page: 1855
  year: 1995
  end-page: 1866
  ident: b0040
  article-title: Adaptive robust impulse noise filtering
  publication-title: IEEE Trans Signal Process
– year: 1998
  ident: b0005
  article-title: Adaptive filters: theory and applications
– year: 2013
  ident: b0050
  article-title: System parameter identification: information criteria and algorithms
– volume: 29
  start-page: 1189
  year: 2015
  end-page: 1206
  ident: b0015
  article-title: Zero-attracting variable-step-size least mean square algorithms for adaptive sparse channel estimation
  publication-title: Int J Adapt Control Signal Process
– start-page: 262
  year: 2010
  end-page: 265
  ident: b0130
  article-title: A fixed point update for kernel width adaptation in information theoretic criteria
  publication-title: Proc. IEEE International Workshop on Machine Learning for Signal Processing (MLSP’10), Kittila, Finland
– year: 2010
  ident: b0045
  article-title: Information theoretic learning: Rnyi’s entropy and kernel perspectives
– volume: 91
  start-page: 401
  year: 1996
  end-page: 407
  ident: b0115
  article-title: A brief survey of bandwidth selection for density estimation
  publication-title: J Am Stat Assoc
– start-page: 1
  year: 2015
  end-page: 7
  ident: b0140
  article-title: A switch kernel width method of correntropy for channel estimation
  publication-title: Proc. IEEE International Joint Conference on Neural Networks, (IJCNN’15), Killarney, Ireland
– start-page: 916
  year: 2015
  end-page: 920
  ident: b0145
  article-title: An adaptive kernel width update method of correntropy for channel estimation
  publication-title: Proc. IEEE International Conference on Digital Signal Processing, (DSP’15), Singapore
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 18
  ident: b0200
  article-title: Improved least mean square algorithm with application to adaptive sparse channel estimation
  publication-title: EURASIP J Wireless Commun Networking
– volume: 70
  start-page: 1114
  year: 2016
  end-page: 1121
  ident: b0165
  article-title: Convergence and steady state analysis of a tap-length optimization algorithm for linear adaptive filters
  publication-title: AEU-Int J Electron Commun
– volume: 71
  start-page: 353
  year: 1984
  end-page: 360
  ident: b0120
  article-title: An alternative method of cross-validation for the smoothing of density estimate
  publication-title: Biometrika
– volume: 91
  start-page: 203
  year: 2011
  end-page: 213
  ident: b0125
  article-title: Information theoretic learning with adaptive kernels
  publication-title: Signal Process
– volume: 55
  start-page: 5286
  year: 2007
  end-page: 5298
  ident: b0065
  article-title: Correntropy: properties and applications in non-Gaussian signal processing
  publication-title: IEEE Trans Signal Process
– volume: 42
  start-page: 1335
  year: 1994
  end-page: 1351
  ident: b0180
  article-title: Stochastic gradient adaptation under general error criteria
  publication-title: IEEE Trans Signal Process
– volume: 52
  start-page: 1461
  year: 2016
  end-page: 1463
  ident: b0100
  article-title: Sparse SM-NLMS algorithm based on correntropy criterion
  publication-title: Electron Lett
– volume: 21
  start-page: 880
  year: 2014
  end-page: 884
  ident: b0155
  article-title: Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion
  publication-title: IEEE Signal Process Lett
– volume: 49
  start-page: 314
  year: 2001
  end-page: 324
  ident: b0160
  article-title: A unified approach to the steady-state and tracking analysis of adaptive filters
  publication-title: IEEE Trans Signal Process
– volume: 19
  start-page: 491
  year: 2012
  end-page: 494
  ident: b0070
  article-title: Maximum correntropy estimation is a smoothed MAP estimation
  publication-title: IEEE Signal Process Lett
– volume: 81
  start-page: 986
  year: 1993
  end-page: 1010
  ident: b0035
  article-title: Signal processing with fractional lower order moments: stable processes and their applications
  publication-title: Proc IEEE
– volume: 54
  start-page: 2187
  year: 2006
  end-page: 2197
  ident: b0060
  article-title: Generalized correlation function: definition, properties, and application to blind equalization
  publication-title: IEEE Trans Signal Process
– volume: 35
  start-page: 450
  year: 1987
  end-page: 454
  ident: b0030
  article-title: Improved convergence analysis of stochastic gradient adaptive filters using the sign algorithm
  publication-title: IEEE Trans Acoust Speech Signal Process
– volume: 10
  start-page: 134
  year: 2013
  end-page: 145
  ident: b0085
  article-title: Prediction method for network traffic based on maximum correntropy criterion
  publication-title: China Commun
– start-page: 2070
  year: 2010
  end-page: 2073
  ident: b0195
  article-title: A closed form recursive solution for Maximum Correntropy training
  publication-title: Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’10), Texas, USA
– volume: 22
  start-page: 1723
  year: 2015
  end-page: 1727
  ident: b0075
  article-title: Convergence of a Fixed-Point Algorithm under Maximum Correntropy Criterion
  publication-title: IEEE Signal Process Lett
– year: 1986
  ident: b0110
  article-title: Density estimation for statistics and data analysis
  publication-title: Appl Stat
– volume: 17
  start-page: 461
  year: 1999
  end-page: 471
  ident: b0205
  article-title: Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels
  publication-title: IEEE J Selected Areas Commun
– volume: 128
  start-page: 243
  issue: C
  year: 2016
  ident: 10.1016/j.aeue.2017.03.028_b0020
  article-title: Norm-adaption penalized least mean square/fourth algorithm for sparse channel estimation
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2016.04.003
– volume: 64
  start-page: 3376
  issue: 13
  year: 2016
  ident: 10.1016/j.aeue.2017.03.028_b0090
  article-title: Generalized correntropy for robust adaptive filtering
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2016.2539127
– volume: 2013
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.aeue.2017.03.028_b0200
  article-title: Improved least mean square algorithm with application to adaptive sparse channel estimation
  publication-title: EURASIP J Wireless Commun Networking
– year: 1985
  ident: 10.1016/j.aeue.2017.03.028_b0170
– start-page: 4919
  year: 2006
  ident: 10.1016/j.aeue.2017.03.028_b0055
  article-title: Correntropy: A localized similarity measure
– volume: 54
  start-page: 2187
  issue: 6
  year: 2006
  ident: 10.1016/j.aeue.2017.03.028_b0060
  article-title: Generalized correlation function: definition, properties, and application to blind equalization
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2006.872524
– year: 2013
  ident: 10.1016/j.aeue.2017.03.028_b0050
– start-page: 262
  year: 2010
  ident: 10.1016/j.aeue.2017.03.028_b0130
  article-title: A fixed point update for kernel width adaptation in information theoretic criteria
– volume: 70
  start-page: 9
  issue: 1–3
  year: 2006
  ident: 10.1016/j.aeue.2017.03.028_b0190
  article-title: Using non-linear even functions for error minimization in adaptive filters
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.07.001
– volume: 19
  start-page: 491
  issue: 8
  year: 2012
  ident: 10.1016/j.aeue.2017.03.028_b0070
  article-title: Maximum correntropy estimation is a smoothed MAP estimation
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2012.2204435
– volume: 29
  start-page: 1189
  issue: 9
  year: 2015
  ident: 10.1016/j.aeue.2017.03.028_b0015
  article-title: Zero-attracting variable-step-size least mean square algorithms for adaptive sparse channel estimation
  publication-title: Int J Adapt Control Signal Process
  doi: 10.1002/acs.2536
– volume: 71
  start-page: 353
  issue: 2
  year: 1984
  ident: 10.1016/j.aeue.2017.03.028_b0120
  article-title: An alternative method of cross-validation for the smoothing of density estimate
  publication-title: Biometrika
  doi: 10.1093/biomet/71.2.353
– volume: 18
  start-page: 380
  issue: 10
  year: 2016
  ident: 10.1016/j.aeue.2017.03.028_b0105
  article-title: A robust sparse adaptive filtering algorithm with a correntropy induced metric constraint for broadband multi-path channel estimation
  publication-title: Entropy
  doi: 10.3390/e18100380
– volume: 35
  start-page: 450
  issue: 4
  year: 1987
  ident: 10.1016/j.aeue.2017.03.028_b0030
  article-title: Improved convergence analysis of stochastic gradient adaptive filters using the sign algorithm
  publication-title: IEEE Trans Acoust Speech Signal Process
  doi: 10.1109/TASSP.1987.1165167
– volume: 81
  start-page: 986
  issue: 7
  year: 1993
  ident: 10.1016/j.aeue.2017.03.028_b0035
  article-title: Signal processing with fractional lower order moments: stable processes and their applications
  publication-title: Proc IEEE
  doi: 10.1109/5.231338
– start-page: 916
  year: 2015
  ident: 10.1016/j.aeue.2017.03.028_b0145
  article-title: An adaptive kernel width update method of correntropy for channel estimation
– start-page: 1
  year: 2012
  ident: 10.1016/j.aeue.2017.03.028_b0135
  article-title: An adaptive kernel width update for correntropy
– year: 1998
  ident: 10.1016/j.aeue.2017.03.028_b0005
– year: 2010
  ident: 10.1016/j.aeue.2017.03.028_b0045
– volume: 1
  start-page: 552
  issue: 6
  year: 2011
  ident: 10.1016/j.aeue.2017.03.028_b0210
  article-title: Adaptive channel estimation techniques for MIMO OFDM systems
  publication-title: Int J Adv Comput Sci Appl
– volume: 70
  start-page: 895
  issue: 7
  year: 2016
  ident: 10.1016/j.aeue.2017.03.028_b0025
  article-title: Sparse-aware set-membership NLMS algorithms and their application for sparse channel estimation and echo cancelation
  publication-title: AEU-Int J Electron Commun
  doi: 10.1016/j.aeue.2016.04.001
– volume: 49
  start-page: 314
  issue: 2
  year: 2001
  ident: 10.1016/j.aeue.2017.03.028_b0160
  article-title: A unified approach to the steady-state and tracking analysis of adaptive filters
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.902113
– volume: 91
  start-page: 203
  issue: 2
  year: 2011
  ident: 10.1016/j.aeue.2017.03.028_b0125
  article-title: Information theoretic learning with adaptive kernels
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2010.06.023
– volume: 2001
  start-page: 192
  issue: 1
  year: 2001
  ident: 10.1016/j.aeue.2017.03.028_b0150
  article-title: Adaptive filters with error non-linearities: Mean-square analysis and optimum design
  publication-title: EURASIP J Adv Signal Process
  doi: 10.1155/S1110865701000348
– volume: 55
  start-page: 5286
  issue: 11
  year: 2007
  ident: 10.1016/j.aeue.2017.03.028_b0065
  article-title: Correntropy: properties and applications in non-Gaussian signal processing
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2007.896065
– start-page: 1
  year: 2015
  ident: 10.1016/j.aeue.2017.03.028_b0140
  article-title: A switch kernel width method of correntropy for channel estimation
– volume: 91
  start-page: 401
  issue: 433
  year: 1996
  ident: 10.1016/j.aeue.2017.03.028_b0115
  article-title: A brief survey of bandwidth selection for density estimation
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1996.10476701
– volume: 10
  start-page: 134
  issue: 1
  year: 2013
  ident: 10.1016/j.aeue.2017.03.028_b0085
  article-title: Prediction method for network traffic based on maximum correntropy criterion
  publication-title: China Commun
  doi: 10.1109/CC.2013.6457536
– volume: 30
  start-page: 275
  issue: 2
  year: 1984
  ident: 10.1016/j.aeue.2017.03.028_b0175
  article-title: The least mean fourth (LMF) adaptive algorithm and its family
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1984.1056886
– start-page: 2950
  year: 2009
  ident: 10.1016/j.aeue.2017.03.028_b0080
  article-title: Using correntropy as a cost function in linear adaptive filters
– start-page: 2070
  year: 2010
  ident: 10.1016/j.aeue.2017.03.028_b0195
  article-title: A closed form recursive solution for Maximum Correntropy training
– volume: 1
  start-page: 49C51
  issue: 3
  year: 1994
  ident: 10.1016/j.aeue.2017.03.028_b0010
  article-title: A family of normalized LMS algorithms
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/97.295321
– volume: 17
  start-page: 461
  issue: 3
  year: 1999
  ident: 10.1016/j.aeue.2017.03.028_b0205
  article-title: Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels
  publication-title: IEEE J Selected Areas Commun
  doi: 10.1109/49.753731
– volume: 22
  start-page: 1723
  issue: 10
  year: 2015
  ident: 10.1016/j.aeue.2017.03.028_b0075
  article-title: Convergence of a Fixed-Point Algorithm under Maximum Correntropy Criterion
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2015.2428713
– year: 1986
  ident: 10.1016/j.aeue.2017.03.028_b0110
  article-title: Density estimation for statistics and data analysis
  publication-title: Appl Stat
– volume: 14
  start-page: 533
  issue: 8
  year: 2007
  ident: 10.1016/j.aeue.2017.03.028_b0185
  article-title: On the time constant under general error criterion
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2007.894971
– volume: 70
  start-page: 1114
  issue: 9
  year: 2016
  ident: 10.1016/j.aeue.2017.03.028_b0165
  article-title: Convergence and steady state analysis of a tap-length optimization algorithm for linear adaptive filters
  publication-title: AEU-Int J Electron Commun
  doi: 10.1016/j.aeue.2016.05.010
– volume: 52
  start-page: 1461
  issue: 17
  year: 2016
  ident: 10.1016/j.aeue.2017.03.028_b0100
  article-title: Sparse SM-NLMS algorithm based on correntropy criterion
  publication-title: Electron Lett
  doi: 10.1049/el.2016.1944
– volume: 43
  start-page: 1855
  issue: 8
  year: 1995
  ident: 10.1016/j.aeue.2017.03.028_b0040
  article-title: Adaptive robust impulse noise filtering
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.403344
– volume: 21
  start-page: 880
  issue: 7
  year: 2014
  ident: 10.1016/j.aeue.2017.03.028_b0155
  article-title: Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2014.2319308
– volume: 25
  start-page: 719
  issue: 4
  year: 2016
  ident: 10.1016/j.aeue.2017.03.028_b0095
  article-title: The data-reusing MCC-based algorithm and its performance analysis
  publication-title: Chinese J Electron
  doi: 10.1049/cje.2016.06.019
– volume: 42
  start-page: 1335
  issue: 6
  year: 1994
  ident: 10.1016/j.aeue.2017.03.028_b0180
  article-title: Stochastic gradient adaptation under general error criteria
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.286951
SSID ssj0020726
Score 2.269915
Snippet A fixed kernel width in MCC algorithm imposes a trade-off among robustness, convergence rate and steady-state accuracy. With a variable kernel width, the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 71
SubjectTerms Adaptive kernel width
Convergence performance analysis
Maximum correntropy criterion
Title Convergence performance analysis of an adaptive kernel width MCC algorithm
URI https://dx.doi.org/10.1016/j.aeue.2017.03.028
Volume 76
WOSCitedRecordID wos000401596900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1618-0399
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020726
  issn: 1434-8411
  databaseCode: AIEXJ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RXvKB2yoofmTtHEtUBJWoOBR1xSWyY4dsu2RXabbqD-gP7yR2HlugogcuUZR1nF3Pl5nx7Mw3CL0nM6N5yLJAU60DTsM4kGAlAxFHwjBDTK5V22xCHB3J-Tz-NplcdbUwF0tRlvLyMl7_V1HDNRB2Uzp7B3H3k8IFOAehwxHEDsd_EnzS5JFXjmNzvVUWMNCPwEutjFq3aUNntiptk6tu6mL6NUmmavlzVS3q4tfYcd2OHI74JoY-OuddjdxQcdI77Cc-LH1iF8WmtwQ_CuX--FkUK29B2xhsaw-HYYmvIPmoTDfMxymIGPKpvGrljAeSe9Xqda8YK0_Xi8WbYffJbwrexRpOPyi7aUhOiWgpan19-Rab9g0r1-cedmltp2kzR9rMkYYshTnuoV0qohjU--7-l4P5Yb9xDwV1VWr-F_jiK5cnePOb_NnBGTktx4_RI7_bwPsOJU_QxJZP0cMRB-UzdDjCCx7hBXd4wascznGHF-zwglu8YMAL7vHyHH3_dHCcfA58g40gg318HQgaZaoh6CHwKktBQwV6JefS8phoERqeKU610TDG8iynOTERUwy2ENGMqdCwF2inXJX2JcKwNrnJVU4tOH1czaTVisyktpFUPGN2D5FuVdLMs883TVCW6d_lsYem_T1rx71y6-ioW-zUe4_OK0wBO7fc9-pOT3mNHgzgfoN26mpj36L72UW9OK_eeeBcA61lk4c
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+performance+analysis+of+an+adaptive+kernel+width+MCC+algorithm&rft.jtitle=International+journal+of+electronics+and+communications&rft.au=Wang%2C+Weihua&rft.au=Zhao%2C+Jihong&rft.au=Qu%2C+Hua&rft.au=Chen%2C+Badong&rft.date=2017-06-01&rft.issn=1434-8411&rft.volume=76&rft.spage=71&rft.epage=76&rft_id=info:doi/10.1016%2Fj.aeue.2017.03.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aeue_2017_03_028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-8411&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-8411&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-8411&client=summon