Convergence performance analysis of an adaptive kernel width MCC algorithm

A fixed kernel width in MCC algorithm imposes a trade-off among robustness, convergence rate and steady-state accuracy. With a variable kernel width, the adaptive kernel width MCC (AMCC) algorithm can improve the learning speed of the MCC algorithm especially when the initial weight vector is far aw...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of electronics and communications Ročník 76; s. 71 - 76
Hlavní autoři: Wang, Weihua, Zhao, Jihong, Qu, Hua, Chen, Badong, Principe, Jose C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier GmbH 01.06.2017
Témata:
ISSN:1434-8411, 1618-0399
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A fixed kernel width in MCC algorithm imposes a trade-off among robustness, convergence rate and steady-state accuracy. With a variable kernel width, the adaptive kernel width MCC (AMCC) algorithm can improve the learning speed of the MCC algorithm especially when the initial weight vector is far away from the optimal weight vector. In this paper, the steady-state excess mean square error (EMSE) of the AMCC algorithm is studied based on energy conservation relation. In addition, a novel convergence measure called initial convergence rate is introduced to evaluate the convergence speed at the beginning of the learning. Simulation experiments are carried out to verify the theoretical analysis and confirm the desirable performance of the AMCC algorithm in several different non-Gaussian noise environments.
ISSN:1434-8411
1618-0399
DOI:10.1016/j.aeue.2017.03.028