Convergence performance analysis of an adaptive kernel width MCC algorithm

A fixed kernel width in MCC algorithm imposes a trade-off among robustness, convergence rate and steady-state accuracy. With a variable kernel width, the adaptive kernel width MCC (AMCC) algorithm can improve the learning speed of the MCC algorithm especially when the initial weight vector is far aw...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of electronics and communications Ročník 76; s. 71 - 76
Hlavní autori: Wang, Weihua, Zhao, Jihong, Qu, Hua, Chen, Badong, Principe, Jose C.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier GmbH 01.06.2017
Predmet:
ISSN:1434-8411, 1618-0399
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A fixed kernel width in MCC algorithm imposes a trade-off among robustness, convergence rate and steady-state accuracy. With a variable kernel width, the adaptive kernel width MCC (AMCC) algorithm can improve the learning speed of the MCC algorithm especially when the initial weight vector is far away from the optimal weight vector. In this paper, the steady-state excess mean square error (EMSE) of the AMCC algorithm is studied based on energy conservation relation. In addition, a novel convergence measure called initial convergence rate is introduced to evaluate the convergence speed at the beginning of the learning. Simulation experiments are carried out to verify the theoretical analysis and confirm the desirable performance of the AMCC algorithm in several different non-Gaussian noise environments.
ISSN:1434-8411
1618-0399
DOI:10.1016/j.aeue.2017.03.028