Wald, QLR, and score tests when parameters are subject to linear inequality constraints

This paper develops Wald-type, QLR, and score-type tests for linear equality constraints in a general class of extremum estimation problems where the parameter space is characterized by a finite number of linear equality and inequality constraints. We show that the asymptotic null distributions of t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of econometrics Ročník 235; číslo 2; s. 2005 - 2026
Hlavní autoři: Fan, Yanqin, Shi, Xuetao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.08.2023
Témata:
ISSN:0304-4076, 1872-6895
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper develops Wald-type, QLR, and score-type tests for linear equality constraints in a general class of extremum estimation problems where the parameter space is characterized by a finite number of linear equality and inequality constraints. We show that the asymptotic null distributions of the Wald and QLR statistics are discontinuous in an implicit nuisance parameter and propose an algorithm to identify it. In contrast, the asymptotic null distribution of the score statistic is not discontinuous in any model parameter but depends on a polytope projection. We present an algorithm based on the Fourier–Motzkin elimination to compute such a projection. We study the consistency and local power properties of the three tests. Finally, we present numerical results of our tests’ finite sample performance from a Monte Carlo study and conduct an empirical illustration of a Mincer earnings regression.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2023.02.009