Wald, QLR, and score tests when parameters are subject to linear inequality constraints

This paper develops Wald-type, QLR, and score-type tests for linear equality constraints in a general class of extremum estimation problems where the parameter space is characterized by a finite number of linear equality and inequality constraints. We show that the asymptotic null distributions of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics Jg. 235; H. 2; S. 2005 - 2026
Hauptverfasser: Fan, Yanqin, Shi, Xuetao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.08.2023
Schlagworte:
ISSN:0304-4076, 1872-6895
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper develops Wald-type, QLR, and score-type tests for linear equality constraints in a general class of extremum estimation problems where the parameter space is characterized by a finite number of linear equality and inequality constraints. We show that the asymptotic null distributions of the Wald and QLR statistics are discontinuous in an implicit nuisance parameter and propose an algorithm to identify it. In contrast, the asymptotic null distribution of the score statistic is not discontinuous in any model parameter but depends on a polytope projection. We present an algorithm based on the Fourier–Motzkin elimination to compute such a projection. We study the consistency and local power properties of the three tests. Finally, we present numerical results of our tests’ finite sample performance from a Monte Carlo study and conduct an empirical illustration of a Mincer earnings regression.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2023.02.009