Statistical adjustment of decadal predictions in a changing climate

A method for post‐processing decadal predictions from global climate models that accounts for model deficiencies in representing climate trends is proposed and applied to decadal predictions of annual global mean temperature from the Canadian Centre for Climate Modelling and Analysis climate model....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters Jg. 39; H. 19
Hauptverfasser: Kharin, V. V., Boer, G. J., Merryfield, W. J., Scinocca, J. F., Lee, W.-S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Washington, DC Blackwell Publishing Ltd 16.10.2012
American Geophysical Union
John Wiley & Sons, Inc
Schlagworte:
ISSN:0094-8276, 1944-8007
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method for post‐processing decadal predictions from global climate models that accounts for model deficiencies in representing climate trends is proposed and applied to decadal predictions of annual global mean temperature from the Canadian Centre for Climate Modelling and Analysis climate model. The method, which provides a time‐dependent trend adjustment, reduces residual drifts that remain after applying the standard time‐independent bias correction when the modelled and observed long‐term trends differ. Initialized predictions and uninitialized simulations that share common specified external forcing are analyzed. Trend adjustment substantially reduces forecast errors in both cases and initialization further enhances skill, particularly for the first forecast year. Key Points A trend‐adjusting correction of decadal predictions is proposed The method reduces residual drifts remaining after standard bias correction Initialization enhances skill in decadal predictions in the first 1‐2 years
Bibliographie:ark:/67375/WNG-KPVNK6RQ-K
ArticleID:2012GL052647
istex:AE8CEAEFAA61BDFBBCCCDB14889F7E858C29F2C8
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0094-8276
1944-8007
DOI:10.1029/2012GL052647