Statistical adjustment of decadal predictions in a changing climate
A method for post‐processing decadal predictions from global climate models that accounts for model deficiencies in representing climate trends is proposed and applied to decadal predictions of annual global mean temperature from the Canadian Centre for Climate Modelling and Analysis climate model....
Uloženo v:
| Vydáno v: | Geophysical research letters Ročník 39; číslo 19 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Washington, DC
Blackwell Publishing Ltd
16.10.2012
American Geophysical Union John Wiley & Sons, Inc |
| Témata: | |
| ISSN: | 0094-8276, 1944-8007 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A method for post‐processing decadal predictions from global climate models that accounts for model deficiencies in representing climate trends is proposed and applied to decadal predictions of annual global mean temperature from the Canadian Centre for Climate Modelling and Analysis climate model. The method, which provides a time‐dependent trend adjustment, reduces residual drifts that remain after applying the standard time‐independent bias correction when the modelled and observed long‐term trends differ. Initialized predictions and uninitialized simulations that share common specified external forcing are analyzed. Trend adjustment substantially reduces forecast errors in both cases and initialization further enhances skill, particularly for the first forecast year.
Key Points
A trend‐adjusting correction of decadal predictions is proposed
The method reduces residual drifts remaining after standard bias correction
Initialization enhances skill in decadal predictions in the first 1‐2 years |
|---|---|
| Bibliografie: | ark:/67375/WNG-KPVNK6RQ-K ArticleID:2012GL052647 istex:AE8CEAEFAA61BDFBBCCCDB14889F7E858C29F2C8 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0094-8276 1944-8007 |
| DOI: | 10.1029/2012GL052647 |