A Comparative Analysis of the Bayesian Regularization and Levenberg–Marquardt Training Algorithms in Neural Networks for Small Datasets: A Metrics Prediction of Neolithic Laminar Artefacts

This study aims to present a comparative analysis of the Bayesian regularization backpropagation and Levenberg–Marquardt training algorithms in neural networks for the metrics prediction of damaged archaeological artifacts, of which the state of conservation is often fragmented due to different reas...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information (Basel) Ročník 15; číslo 5; s. 270
Hlavní autoři: Troiano, Maurizio, Nobile, Eugenio, Mangini, Fabio, Mastrogiuseppe, Marco, Conati Barbaro, Cecilia, Frezza, Fabrizio
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.05.2024
Témata:
ISSN:2078-2489, 2078-2489
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This study aims to present a comparative analysis of the Bayesian regularization backpropagation and Levenberg–Marquardt training algorithms in neural networks for the metrics prediction of damaged archaeological artifacts, of which the state of conservation is often fragmented due to different reasons, such as ritual, use wear, or post-depositional processes. The archaeological artifacts, specifically laminar blanks (so-called blades), come from different sites located in the Southern Levant that belong to the Pre-Pottery B Neolithic (PPNB) (10,100/9500–400 cal B.P.). This paper shows the entire procedure of the analysis, from its normalization of the dataset to its comparative analysis and overfitting problem resolution.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2078-2489
2078-2489
DOI:10.3390/info15050270