Machine learning for the selection of carbon-based materials for tetracycline and sulfamethoxazole adsorption

[Display omitted] •Antiobiotics adsorption on carbon-based materials was modeled by machine learning.•Random forest showed best prediction accuracy than GBT and ANN.•SBET , pHsol, C0 were critical factors for TC (74%) and SMX (80%) adsorption on CBMs.•Impact tendencies of SBET, pHsol, C0 on adsorpti...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 406; p. 126782
Main Authors: Zhu, Xinzhe, Wan, Zhonghao, Tsang, Daniel C.W., He, Mingjing, Hou, Deyi, Su, Zhishan, Shang, Jin
Format: Journal Article
Language:English
Published: Elsevier B.V 15.02.2021
Subjects:
ISSN:1385-8947, 1873-3212
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •Antiobiotics adsorption on carbon-based materials was modeled by machine learning.•Random forest showed best prediction accuracy than GBT and ANN.•SBET , pHsol, C0 were critical factors for TC (74%) and SMX (80%) adsorption on CBMs.•Impact tendencies of SBET, pHsol, C0 on adsorption were similar for TC and SMX.•Chemical compositions and pHpzc of CBMs showed different influences on TC and SMX. Antibiotics as emerging pollutants have attracted extensive attention due to their ecotoxicity and persistence in the environment. Adsorption of antibiotics on carbon-based materials (CBMs) such as biochar and activated carbon was recognized as one of the most promising technologies for wastewater treatment. This study applied machine learning (ML) methods to develop generic prediction models of tetracycline (TC) and sulfamethoxazole (SMX) adsorption on CBMs. The results suggested that random forest outperformed gradient boosting trees and artificial neural network for both TC and SMX adsorption models. The random forest models could accurately predict the adsorption capacity of antibiotics on CBMs using material properties and adsorption conditions as model inputs. The developed ML models presented better generalization ability than traditional isotherm models under variable environmental conditions (e.g., temperature, solution pH) and adsorbent types. The relative importance analysis and partial dependence plots based on ML models were performed to compare TC and SMX adsorption on CBMs. The results indicated the critical role of specific surface area for both TC (24%) and SMX (45%) adsorption, while the other material properties (e.g., H/C, (O + N)/C, pHpzc) showed variable influences due to the differences in molecular structures, functional groups, and pKa values of TC and SMX. The accurate ML prediction models with generalization ability are useful for designing efficient CBMs with minimal experimental screening, while the relative importance and partial dependence plot analysis can guide rational applications of CBMs for antibiotics wastewater treatment.
AbstractList [Display omitted] •Antiobiotics adsorption on carbon-based materials was modeled by machine learning.•Random forest showed best prediction accuracy than GBT and ANN.•SBET , pHsol, C0 were critical factors for TC (74%) and SMX (80%) adsorption on CBMs.•Impact tendencies of SBET, pHsol, C0 on adsorption were similar for TC and SMX.•Chemical compositions and pHpzc of CBMs showed different influences on TC and SMX. Antibiotics as emerging pollutants have attracted extensive attention due to their ecotoxicity and persistence in the environment. Adsorption of antibiotics on carbon-based materials (CBMs) such as biochar and activated carbon was recognized as one of the most promising technologies for wastewater treatment. This study applied machine learning (ML) methods to develop generic prediction models of tetracycline (TC) and sulfamethoxazole (SMX) adsorption on CBMs. The results suggested that random forest outperformed gradient boosting trees and artificial neural network for both TC and SMX adsorption models. The random forest models could accurately predict the adsorption capacity of antibiotics on CBMs using material properties and adsorption conditions as model inputs. The developed ML models presented better generalization ability than traditional isotherm models under variable environmental conditions (e.g., temperature, solution pH) and adsorbent types. The relative importance analysis and partial dependence plots based on ML models were performed to compare TC and SMX adsorption on CBMs. The results indicated the critical role of specific surface area for both TC (24%) and SMX (45%) adsorption, while the other material properties (e.g., H/C, (O + N)/C, pHpzc) showed variable influences due to the differences in molecular structures, functional groups, and pKa values of TC and SMX. The accurate ML prediction models with generalization ability are useful for designing efficient CBMs with minimal experimental screening, while the relative importance and partial dependence plot analysis can guide rational applications of CBMs for antibiotics wastewater treatment.
ArticleNumber 126782
Author Hou, Deyi
Zhu, Xinzhe
Su, Zhishan
Wan, Zhonghao
He, Mingjing
Tsang, Daniel C.W.
Shang, Jin
Author_xml – sequence: 1
  givenname: Xinzhe
  surname: Zhu
  fullname: Zhu, Xinzhe
  organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
– sequence: 2
  givenname: Zhonghao
  surname: Wan
  fullname: Wan, Zhonghao
  organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
– sequence: 3
  givenname: Daniel C.W.
  surname: Tsang
  fullname: Tsang, Daniel C.W.
  email: dan.tsang@polyu.edu.hk
  organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
– sequence: 4
  givenname: Mingjing
  surname: He
  fullname: He, Mingjing
  organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
– sequence: 5
  givenname: Deyi
  surname: Hou
  fullname: Hou, Deyi
  organization: School of Environment, Tsinghua University, Beijing 100084, China
– sequence: 6
  givenname: Zhishan
  surname: Su
  fullname: Su, Zhishan
  organization: Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan 610064, China
– sequence: 7
  givenname: Jin
  surname: Shang
  fullname: Shang, Jin
  organization: City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, China
BookMark eNp9kM1OxCAURonRRB19AHd9gY5AO4XGlTH-JRo3uia3l4vDpAMGqlGfXppx5cIVcMP5cr9zzPZDDMTYmeBLwUV3vlkibZaSy_KWndJyjx0JrZq6kULul3ujV7XuW3XIjnPecM67XvRHbPsIuPaBqpEgBR9eKxdTNa2pyjQSTj6GKroKIQ0x1ANkstUWJkoexrz7S1MC_MJxToFgq_w-OtjStI6f8B3HMrQ5prc56oQduMLR6e-5YC83189Xd_XD0-391eVDjS3vptq6oUXbOcsRHO-UQt2teitAS4XQ9hqt7IXj3K4aHKQSQAoA2qZRg9C6bxZM7HIxxZwTOfOW_BbSlxHczL7MxhRfZvZldr4Ko_4w6CeYty79_PgvebEjqVT68JRMRk8ByfpUFBob_T_0D4uziiM
CitedBy_id crossref_primary_10_1016_j_jcis_2024_07_050
crossref_primary_10_1016_j_scitotenv_2024_174679
crossref_primary_10_1016_j_clwat_2025_100073
crossref_primary_10_1016_j_scitotenv_2024_175402
crossref_primary_10_1016_j_jece_2024_112732
crossref_primary_10_1016_j_jwpe_2025_108079
crossref_primary_10_1016_j_envres_2024_118593
crossref_primary_10_1016_j_envpol_2023_122869
crossref_primary_10_1016_j_envres_2021_110996
crossref_primary_10_1016_j_psep_2023_02_065
crossref_primary_10_1007_s42773_022_00183_w
crossref_primary_10_3390_su162310681
crossref_primary_10_1016_j_cej_2024_149862
crossref_primary_10_1016_j_surfin_2024_104293
crossref_primary_10_1016_j_cej_2024_149586
crossref_primary_10_1016_j_chemosphere_2022_137044
crossref_primary_10_1016_j_jtice_2021_11_022
crossref_primary_10_3390_nano11010030
crossref_primary_10_1016_j_ces_2025_122381
crossref_primary_10_1016_j_jcis_2023_05_052
crossref_primary_10_1016_j_biortech_2024_130776
crossref_primary_10_1016_j_cej_2024_150626
crossref_primary_10_1016_j_enconman_2024_118302
crossref_primary_10_1016_j_seppur_2025_135077
crossref_primary_10_1016_j_scitotenv_2024_173471
crossref_primary_10_1016_j_seppur_2025_132089
crossref_primary_10_1016_j_jcis_2024_02_084
crossref_primary_10_1016_j_envpol_2024_124148
crossref_primary_10_1016_j_biortech_2022_127348
crossref_primary_10_1016_j_chemosphere_2023_141010
crossref_primary_10_1016_j_biortech_2022_126923
crossref_primary_10_1016_j_molstruc_2024_139850
crossref_primary_10_1016_j_seppur_2024_130850
crossref_primary_10_1016_j_scitotenv_2023_163895
crossref_primary_10_1021_acs_est_5c03992
crossref_primary_10_1016_j_jhazmat_2023_132773
crossref_primary_10_1016_j_cej_2025_160677
crossref_primary_10_1039_D5RA00489F
crossref_primary_10_1021_acs_iecr_5c00563
crossref_primary_10_1016_j_cej_2023_143073
crossref_primary_10_1016_j_seppur_2022_120775
crossref_primary_10_1007_s11696_021_02024_9
crossref_primary_10_1016_j_jenvman_2024_122405
crossref_primary_10_1016_j_jwpe_2024_106312
crossref_primary_10_1016_j_watres_2024_122521
crossref_primary_10_1038_s41545_024_00429_z
crossref_primary_10_3390_ijms252111696
crossref_primary_10_1039_D5RA00705D
crossref_primary_10_1016_j_energy_2024_133707
crossref_primary_10_1155_2022_6292200
crossref_primary_10_1016_j_biortech_2022_128504
crossref_primary_10_1016_j_eswa_2022_119453
crossref_primary_10_1016_j_biortech_2021_125832
crossref_primary_10_1007_s11356_024_32951_5
crossref_primary_10_1016_j_hybadv_2023_100026
crossref_primary_10_1016_j_biortech_2025_133183
crossref_primary_10_1016_j_chemosphere_2023_138716
crossref_primary_10_1016_j_renene_2022_11_061
crossref_primary_10_1016_j_seppur_2024_127790
crossref_primary_10_1016_j_jece_2021_107043
crossref_primary_10_1039_D1EN00459J
crossref_primary_10_1007_s44246_025_00213_9
crossref_primary_10_3390_su142315598
crossref_primary_10_1080_10643389_2023_2190313
crossref_primary_10_1016_j_molstruc_2024_139062
crossref_primary_10_1016_j_cej_2021_131967
crossref_primary_10_1016_j_jenvman_2024_121162
crossref_primary_10_1016_j_scitotenv_2024_173955
crossref_primary_10_1016_j_colsurfa_2021_127263
crossref_primary_10_1016_j_molliq_2023_123008
crossref_primary_10_1016_j_jenvman_2023_118895
crossref_primary_10_1016_j_seppur_2022_120796
crossref_primary_10_1016_j_biortech_2025_133207
crossref_primary_10_1016_j_cej_2023_142486
crossref_primary_10_1016_j_biortech_2022_128454
crossref_primary_10_1016_j_dwt_2024_100536
crossref_primary_10_1016_j_jece_2024_113152
crossref_primary_10_1016_j_totert_2022_100001
crossref_primary_10_1007_s12665_025_12423_w
crossref_primary_10_1016_j_jece_2024_114925
crossref_primary_10_1016_j_cej_2021_131285
crossref_primary_10_1016_j_eti_2023_103425
crossref_primary_10_1016_j_jenvman_2023_119065
crossref_primary_10_1007_s11356_023_31131_1
crossref_primary_10_1016_j_ceramint_2021_10_083
crossref_primary_10_1016_j_jhazmat_2022_130031
crossref_primary_10_1016_j_jiec_2025_04_039
crossref_primary_10_3390_su142316055
crossref_primary_10_1016_j_buildenv_2022_108941
crossref_primary_10_1016_j_scitotenv_2023_166467
crossref_primary_10_1016_j_seppur_2023_124891
crossref_primary_10_1016_j_envres_2022_113953
crossref_primary_10_1016_j_jhazmat_2022_129299
crossref_primary_10_1016_j_seppur_2024_127666
crossref_primary_10_1016_j_ijbiomac_2023_124145
crossref_primary_10_1021_acs_inorgchem_5c00994
crossref_primary_10_1155_2022_8107196
crossref_primary_10_1016_j_jwpe_2024_106653
crossref_primary_10_1002_smll_202504877
crossref_primary_10_1016_j_jhazmat_2025_139358
crossref_primary_10_1016_j_ces_2024_120295
crossref_primary_10_1016_j_compchemeng_2021_107289
crossref_primary_10_1016_j_jwpe_2025_107462
crossref_primary_10_1016_j_materresbull_2024_112974
crossref_primary_10_1016_j_cej_2024_150496
crossref_primary_10_1016_j_biortech_2022_128008
crossref_primary_10_1016_j_colsurfa_2025_138197
crossref_primary_10_1016_j_foodchem_2023_135554
crossref_primary_10_1155_2022_3410872
crossref_primary_10_3390_separations10050300
crossref_primary_10_1016_j_resconrec_2022_106847
crossref_primary_10_1016_j_apcatb_2022_122184
crossref_primary_10_1039_D3QI01705B
crossref_primary_10_1016_j_resconrec_2022_106206
crossref_primary_10_1016_j_jclepro_2022_134351
crossref_primary_10_1016_j_jenvman_2023_117505
crossref_primary_10_1002_pc_28945
crossref_primary_10_1016_j_envres_2024_120108
crossref_primary_10_1016_j_synthmet_2025_117874
crossref_primary_10_1016_j_jhazmat_2022_128747
crossref_primary_10_1016_j_scitotenv_2021_150554
crossref_primary_10_1016_j_scitotenv_2023_169035
crossref_primary_10_1016_j_watres_2023_120930
crossref_primary_10_1016_j_nanoen_2024_109670
crossref_primary_10_1016_j_carbpol_2022_119240
crossref_primary_10_1016_j_geoen_2023_211790
crossref_primary_10_1016_j_eswa_2024_123800
crossref_primary_10_1016_j_biortech_2023_130291
crossref_primary_10_1016_j_jhazmat_2021_126824
crossref_primary_10_1016_j_jwpe_2025_107970
crossref_primary_10_1016_j_seppur_2025_133019
crossref_primary_10_3390_nano11102734
crossref_primary_10_1016_j_jcis_2024_09_136
crossref_primary_10_32604_jrm_2022_018625
crossref_primary_10_1155_2022_3901608
crossref_primary_10_3390_c10010010
crossref_primary_10_1016_j_jhazmat_2024_135787
crossref_primary_10_1016_j_mser_2025_101010
crossref_primary_10_1088_1361_6528_ac46d7
crossref_primary_10_1016_j_colsurfa_2022_130915
crossref_primary_10_1155_2022_8448489
crossref_primary_10_1016_j_biortech_2024_130865
crossref_primary_10_1016_j_chemosphere_2021_131759
crossref_primary_10_1016_j_chemosphere_2023_139163
crossref_primary_10_1088_1361_648X_ada65b
crossref_primary_10_1016_j_jclepro_2025_145999
crossref_primary_10_1016_j_surfin_2025_106535
crossref_primary_10_1080_17583004_2024_2364784
crossref_primary_10_1016_j_cej_2023_147503
crossref_primary_10_1016_j_biortech_2021_126046
crossref_primary_10_1016_j_cej_2023_144636
crossref_primary_10_1016_j_scp_2023_101127
crossref_primary_10_1016_j_seppur_2025_133882
crossref_primary_10_1016_j_conbuildmat_2022_129480
crossref_primary_10_1016_j_jece_2023_110459
crossref_primary_10_1016_j_rineng_2024_103538
crossref_primary_10_1016_j_biortech_2022_128547
crossref_primary_10_1016_j_jhazmat_2024_133797
crossref_primary_10_1016_j_jhazmat_2021_127060
crossref_primary_10_1016_j_seppur_2025_133925
crossref_primary_10_1016_j_colsurfa_2024_135059
crossref_primary_10_1016_j_scitotenv_2022_160257
crossref_primary_10_1016_j_cej_2022_137505
crossref_primary_10_1038_s41598_023_38579_8
crossref_primary_10_1016_j_jhazmat_2024_135853
crossref_primary_10_1016_j_scitotenv_2023_163562
crossref_primary_10_1002_bbb_70015
crossref_primary_10_1016_j_jhazmat_2025_137479
crossref_primary_10_1016_j_compscitech_2022_109414
crossref_primary_10_1007_s41872_025_00313_w
crossref_primary_10_1016_j_jece_2025_118251
crossref_primary_10_1016_j_biombioe_2025_108129
crossref_primary_10_1016_j_jhazmat_2024_135440
crossref_primary_10_1016_j_biortech_2022_128417
crossref_primary_10_1016_j_fuel_2023_128005
crossref_primary_10_1016_j_jtice_2024_105345
crossref_primary_10_1021_acsestwater_5c00244
crossref_primary_10_1016_j_mineng_2025_109601
crossref_primary_10_1007_s42107_025_01489_3
crossref_primary_10_1016_j_watres_2025_124079
crossref_primary_10_1016_j_nantod_2022_101430
crossref_primary_10_1016_j_chemosphere_2021_132203
crossref_primary_10_1016_j_seppur_2023_123245
crossref_primary_10_1038_s41598_025_91229_z
crossref_primary_10_1016_j_cej_2023_147333
Cites_doi 10.1080/09593330.2014.943299
10.1016/j.cej.2017.04.106
10.1111/sum.12557
10.1016/j.cej.2014.03.006
10.1016/j.chemosphere.2017.09.040
10.1016/j.scitotenv.2020.137389
10.1016/j.scitotenv.2018.01.249
10.1016/j.jhazmat.2020.122598
10.1021/acs.langmuir.8b04179
10.1021/acs.est.0c02526
10.1038/srep31920
10.1016/j.fuproc.2017.02.019
10.1016/j.jhazmat.2016.10.006
10.1016/j.scitotenv.2019.02.006
10.1016/j.biortech.2018.03.013
10.1016/j.foodqual.2018.02.008
10.1016/j.biortech.2012.06.085
10.1021/ie202166g
10.3390/su10072265
10.1002/clen.201300989
10.1016/j.cej.2015.08.023
10.1016/j.cej.2019.04.097
10.1016/j.chemosphere.2016.03.083
10.1016/j.cej.2019.122713
10.1111/sum.12546
10.1039/C9GC01843C
10.3389/fchem.2019.00943
10.1016/j.epsr.2020.106254
10.1016/j.cej.2019.03.008
10.1016/S0167-7012(00)00201-3
10.1016/j.watres.2017.07.070
10.1016/j.jclepro.2019.119553
10.1016/j.scitotenv.2019.134847
10.1016/j.jenvman.2019.02.068
10.1039/C6RA00277C
10.1016/j.biortech.2019.121527
10.1039/C9RA02610J
10.1016/j.jhazmat.2019.121769
10.1021/acs.est.9b06287
10.1016/j.cej.2020.124642
10.1021/acs.energyfuels.8b00470
10.1016/j.chemosphere.2016.12.041
10.1016/j.marpolbul.2014.01.005
10.1016/j.jhazmat.2019.06.004
10.1016/j.watres.2004.04.048
10.1021/acs.est.5b00729
10.1016/j.jclepro.2020.122915
10.1016/j.biortech.2020.123228
10.1016/j.indcrop.2018.02.005
10.1016/j.cej.2014.03.021
10.1016/j.jcis.2015.12.003
10.1016/j.etap.2017.01.004
10.1016/j.cej.2019.122320
10.1126/sciadv.aax9324
10.1016/j.biortech.2017.07.150
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2020.126782
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2020_126782
S1385894720329107
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
CITATION
EFKBS
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
ZY4
~HD
ID FETCH-LOGICAL-c406t-dfb4cd6fd0caf0677c8659d1a827ca498cd291f00d53cb271ae7aaa4337b18893
ISICitedReferencesCount 209
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600988800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1385-8947
IngestDate Sat Nov 29 07:01:08 EST 2025
Tue Nov 18 22:33:02 EST 2025
Fri Feb 23 02:47:10 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ANN
BC
O/C
pHpzc
C0
Sustainable waste management
CBM
WF
MBC
C wt.
T
Activated carbon
Antibiotics removal
GBT
SBET
PDP
ML
AC
GO
CN
TC
Engineered biochar
Random forest algorithm
RF
pHsol
(O+N)/C
H/C
Industrial wastewater treatment
SMX
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c406t-dfb4cd6fd0caf0677c8659d1a827ca498cd291f00d53cb271ae7aaa4337b18893
OpenAccessLink https://scholars.cityu.edu.hk/en/publications/machine-learning-for-the-selection-of-carbon-based-materials-for-
ParticipantIDs crossref_primary_10_1016_j_cej_2020_126782
crossref_citationtrail_10_1016_j_cej_2020_126782
elsevier_sciencedirect_doi_10_1016_j_cej_2020_126782
PublicationCentury 2000
PublicationDate 2021-02-15
PublicationDateYYYYMMDD 2021-02-15
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lian, Sun, Song, Zhu, Qi, Xing (b0105) 2014; 248
Kah, Sigmund, Xiao, Hofmann (b0215) 2017; 124
Yu, Li, Han, Ma (b0055) 2016; 153
Zhu, Tsang, Wang, Su, Hou, Li, Shang (b0130) 2020; 273
J. Friedman, T. Hastie, R. Tibshirani, The elements of statistical learning, Springer series in statistics New York 2001.
Sapountzoglou, Lago, Raison (b0195) 2020; 182
Kim, Lee, Kim (b0150) 2020; 6
López-Cano, Cayuela, Mondini, Takaya, Ross, Sánchez-Monedero (b0180) 2018; 10
C. Molnar, Interpretable machine learning. A Guide for Making Black Box Models Explainable, https://christophm.github.io/interpretable-ml-book/2019.
Gonzalez-Serrano, Cordero, Rodriguez-Mirasol, Cotoruelo, Rodriguez (b0270) 2004; 38
Garcia, Garcia-Galan, Day, Boopathy, White, Wallace, Hunter (b0020) 2020; 307
Peñafiel, Matesanz, Vanegas, Bermejo, Ormad (b0320) 2019; 1–12
Rodriguez-Narvaez, Peralta-Hernandez, Goonetilleke, Bandala (b0030) 2017; 323
Kumar, Xiong, Wan, Sun, Tsang, Gupta, Gao, Cao, Tang, Ok (b0165) 2020; 123613
Jang, Yoo, Choi, Park, Kan (b0285) 2018; 259
Peng, Chen, Que, Yang, Deng, Deng, Shi, Xu, Wu (b0300) 2016; 6
Xu, Gao, Lin, Gao, Zhang, Karnowo, Hu, Sun, Syed-Hassan, Zhang (b0255) 2020; 7
Wang, Chu, Fang, Huang, Song, Xue (b0210) 2017; 12
Prasannamedha, Kumar (b0155) 2020; 250
Jing, Chen, Wen, Liu, Hu, Yang, Guo, Luo, Yu, Xu (b0060) 2020; 36
Yazidi, Atrous, Edi Soetaredjo, Sellaoui, Ismadji, Erto, Bonilla-Petriciolet, Luiz Dotto, Ben Lamine (b0075) 2020; 379
Jing, Wang, Liu, Wang, Jiang (b0110) 2014; 248
He, Dai, Zhang, Sun, Xie, Tian, Yan, Huo (b0260) 2016; 6
Yang, Zhang, Jian, Wang, Xing, Sun, Hao (b0170) 2020; 396
Bao, Chong, Mohamed, Pau-Loke, Jo-Shu, Tau, Su, Joon (b0035) 2020; 122961
Meng, Qiu, Zhong, Liu, Liu, Chen (b0240) 2019; 368
Li, Han, Liang, Shohag, Yang (b0315) 2015; 36
Ye, Camps-Arbestain, Shen, Lehmann, Singh, Sabir (b0065) 2020; 36
Vigneau, Courcoux, Symoneaux, Guérin, Villière (b0190) 2018; 68
Premarathna, Rajapaksha, Sarkar, Kwon, Bhatnagar, Ok, Vithanage (b0045) 2019; 372
Dai, Meng, Zhang, Huang (b0230) 2020; 123455
Zhang, Ying, Pan, Liu, Zhao (b0010) 2015; 49
Yi, Zuo, Wei, Fu, Qu, Zheng, Xu, Guo, Li, Zhu (b0100) 2020; 719
Wang, Ok, Tsang, Alessi, Rinklebe, Wang, Mašek, Hou, O’Connor, Hou (b0070) 2020; 1–29
Selmi, Sanchez-Sanchez, Gadonneix, Jagiello, Seffen, Sammouda, Celzard, Fierro (b0265) 2018; 115
Yang, Zheng, Lu, Xue, Li (b0290) 2011; 50
Foroughi, Azqhandi, Kakhki (b0135) 2020; 388
Wan, Wu, Liu, Chen, Zhao, Xiao (b0280) 2019; 35
Sun, Zeng, Tsang, Zhu, Li (b0015) 2017; 189
Gothwal, Shashidhar (b0025) 2015; 43
Xiang, Xu, Wei, Zhou, Yang, Yang, Yang, Zhang, Luo, Zhou (b0050) 2019; 237
Basheer, Hajmeer (b0200) 2000; 43
Manjunath, Singh Baghel, Kumar (b0085) 2020; 381
Louppe, Wehenkel, Sutera, Geurts (b0245) 2013
Arampatzidou, Deliyanni (b0275) 2016; 466
Li, Liang, Jin, Zhou, Li, Wu, Pan (b0305) 2017; 171
Ahmed (b0160) 2017; 50
Sigmund, Gharasoo, Huffer, Hofmann (b0140) 2020; 54
Sun, Cho, Graham, Hou, Yip, Khan, Song, Li, Tsang (b0040) 2019; 664
Xiong, Zeng, Yang, Zhou, Zhang, Cheng, Liu, Hu, Wan, Zhou, Xu, Li (b0095) 2018; 627
Zhang, Zhong, Zhang (b0145) 2020; 54
Zhu, Wu, Coulon, Wu, Chen (b0185) 2018; 32
Wan, Sun, Tsang, Iris, Fan, Clark, Zhou, Cao, Gao, Ok (b0235) 2019; 21
Zhu, Li, Wang (b0205) 2019; 288
Peiris, Gunatilake, Mlsna, Mohan, Vithanage (b0115) 2017; 246
Manzetti, Ghisi (b0005) 2014; 79
Liu, Liu, Jiang, Chen, Li, Yu (b0295) 2012; 121
Reguyal, Sarmah, Gao (b0225) 2017; 321
Zhu, Wang, Ok (b0120) 2019; 378
Shi, Liu, Wang, Zhang (b0310) 2019; 9
Zhang, Li, Wang, Zhao, Hu, Lu, Wen, Chen, Wang (b0090) 2020; 390
Wang, Liu (b0175) 2017; 160
Li, Wang, Zhang, Liu, Liu, Chen (b0220) 2020; 711
Álvarez-Torrellas, Rodríguez, Ovejero, García (b0080) 2016; 283
Jing (10.1016/j.cej.2020.126782_b0110) 2014; 248
Zhu (10.1016/j.cej.2020.126782_b0205) 2019; 288
Vigneau (10.1016/j.cej.2020.126782_b0190) 2018; 68
Prasannamedha (10.1016/j.cej.2020.126782_b0155) 2020; 250
Gothwal (10.1016/j.cej.2020.126782_b0025) 2015; 43
Ye (10.1016/j.cej.2020.126782_b0065) 2020; 36
Zhu (10.1016/j.cej.2020.126782_b0120) 2019; 378
Garcia (10.1016/j.cej.2020.126782_b0020) 2020; 307
Kim (10.1016/j.cej.2020.126782_b0150) 2020; 6
Premarathna (10.1016/j.cej.2020.126782_b0045) 2019; 372
Arampatzidou (10.1016/j.cej.2020.126782_b0275) 2016; 466
Kah (10.1016/j.cej.2020.126782_b0215) 2017; 124
Xu (10.1016/j.cej.2020.126782_b0255) 2020; 7
Meng (10.1016/j.cej.2020.126782_b0240) 2019; 368
Wan (10.1016/j.cej.2020.126782_b0280) 2019; 35
Zhang (10.1016/j.cej.2020.126782_b0145) 2020; 54
Shi (10.1016/j.cej.2020.126782_b0310) 2019; 9
Selmi (10.1016/j.cej.2020.126782_b0265) 2018; 115
10.1016/j.cej.2020.126782_b0250
Yu (10.1016/j.cej.2020.126782_b0055) 2016; 153
Dai (10.1016/j.cej.2020.126782_b0230) 2020; 123455
Álvarez-Torrellas (10.1016/j.cej.2020.126782_b0080) 2016; 283
Kumar (10.1016/j.cej.2020.126782_b0165) 2020; 123613
Zhang (10.1016/j.cej.2020.126782_b0090) 2020; 390
Peñafiel (10.1016/j.cej.2020.126782_b0320) 2019; 1–12
Zhu (10.1016/j.cej.2020.126782_b0185) 2018; 32
Wan (10.1016/j.cej.2020.126782_b0235) 2019; 21
Li (10.1016/j.cej.2020.126782_b0220) 2020; 711
López-Cano (10.1016/j.cej.2020.126782_b0180) 2018; 10
Wang (10.1016/j.cej.2020.126782_b0210) 2017; 12
Peng (10.1016/j.cej.2020.126782_b0300) 2016; 6
Xiong (10.1016/j.cej.2020.126782_b0095) 2018; 627
Wang (10.1016/j.cej.2020.126782_b0175) 2017; 160
Manzetti (10.1016/j.cej.2020.126782_b0005) 2014; 79
Sun (10.1016/j.cej.2020.126782_b0040) 2019; 664
Bao (10.1016/j.cej.2020.126782_b0035) 2020; 122961
Li (10.1016/j.cej.2020.126782_b0315) 2015; 36
Gonzalez-Serrano (10.1016/j.cej.2020.126782_b0270) 2004; 38
Basheer (10.1016/j.cej.2020.126782_b0200) 2000; 43
Li (10.1016/j.cej.2020.126782_b0305) 2017; 171
Yang (10.1016/j.cej.2020.126782_b0290) 2011; 50
Wang (10.1016/j.cej.2020.126782_b0070) 2020; 1–29
Reguyal (10.1016/j.cej.2020.126782_b0225) 2017; 321
Zhu (10.1016/j.cej.2020.126782_b0130) 2020; 273
Louppe (10.1016/j.cej.2020.126782_b0245) 2013
Jang (10.1016/j.cej.2020.126782_b0285) 2018; 259
Jing (10.1016/j.cej.2020.126782_b0060) 2020; 36
Foroughi (10.1016/j.cej.2020.126782_b0135) 2020; 388
He (10.1016/j.cej.2020.126782_b0260) 2016; 6
Sun (10.1016/j.cej.2020.126782_b0015) 2017; 189
Sigmund (10.1016/j.cej.2020.126782_b0140) 2020; 54
Manjunath (10.1016/j.cej.2020.126782_b0085) 2020; 381
Peiris (10.1016/j.cej.2020.126782_b0115) 2017; 246
Sapountzoglou (10.1016/j.cej.2020.126782_b0195) 2020; 182
Zhang (10.1016/j.cej.2020.126782_b0010) 2015; 49
Liu (10.1016/j.cej.2020.126782_b0295) 2012; 121
Xiang (10.1016/j.cej.2020.126782_b0050) 2019; 237
Rodriguez-Narvaez (10.1016/j.cej.2020.126782_b0030) 2017; 323
Yi (10.1016/j.cej.2020.126782_b0100) 2020; 719
Lian (10.1016/j.cej.2020.126782_b0105) 2014; 248
Yazidi (10.1016/j.cej.2020.126782_b0075) 2020; 379
10.1016/j.cej.2020.126782_b0125
Ahmed (10.1016/j.cej.2020.126782_b0160) 2017; 50
Yang (10.1016/j.cej.2020.126782_b0170) 2020; 396
References_xml – volume: 6
  start-page: eaax9324
  year: 2020
  ident: b0150
  article-title: Inverse design of porous materials using artificial neural networks
  publication-title: Sci. Adv.
– volume: 43
  start-page: 479
  year: 2015
  end-page: 489
  ident: b0025
  article-title: Antibiotic Pollution in the Environment: A Review
  publication-title: CLEAN - Soil, Air, Water
– volume: 627
  start-page: 235
  year: 2018
  end-page: 244
  ident: b0095
  article-title: Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent
  publication-title: Sci. Total. Environ.
– volume: 43
  start-page: 3
  year: 2000
  end-page: 31
  ident: b0200
  article-title: Artificial neural networks: fundamentals, computing, design, and application
  publication-title: J. Microbiol. Methods
– volume: 49
  start-page: 6772
  year: 2015
  end-page: 6782
  ident: b0010
  article-title: Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance
  publication-title: Environ. Sci. Technol.
– reference: J. Friedman, T. Hastie, R. Tibshirani, The elements of statistical learning, Springer series in statistics New York 2001.
– volume: 171
  start-page: 66
  year: 2017
  end-page: 73
  ident: b0305
  article-title: The role of ash content on bisphenol A sorption to biochars derived from different agricultural wastes
  publication-title: Chemosphere
– volume: 9
  start-page: 17841
  year: 2019
  end-page: 17851
  ident: b0310
  article-title: Activated carbons derived from hydrothermal impregnation of sucrose with phosphoric acid: remarkable adsorbents for sulfamethoxazole removal
  publication-title: RSC Adv.
– volume: 259
  start-page: 24
  year: 2018
  end-page: 31
  ident: b0285
  article-title: Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar
  publication-title: Bioresource Technol.
– volume: 388
  year: 2020
  ident: b0135
  article-title: Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe3O4-g-CN@ PEI-β-CD nanocomposite: Modeling by response surface methodology (RSM), boosted regression tree (BRT), and general regression neural network (GRNN)
  publication-title: J. Hazard. Mater.
– volume: 379
  year: 2020
  ident: b0075
  article-title: Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: Experimental study and modeling analysis
  publication-title: Chem. Eng. J.
– volume: 246
  start-page: 150
  year: 2017
  end-page: 159
  ident: b0115
  article-title: Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review
  publication-title: Bioresour Technol.
– volume: 79
  start-page: 7
  year: 2014
  end-page: 15
  ident: b0005
  article-title: The environmental release and fate of antibiotics
  publication-title: Mar. Pollut. Bull.
– volume: 50
  start-page: 13892
  year: 2011
  end-page: 13898
  ident: b0290
  article-title: Adsorption Interaction of Tetracyclines with Porous Synthetic Resins
  publication-title: Ind. Eng. Chem. Res.
– volume: 719
  year: 2020
  ident: b0100
  article-title: Enhanced adsorption of bisphenol A, tylosin, and tetracycline from aqueous solution to nitrogen-doped multiwall carbon nanotubes via cation-pi and pi-pi electron-donor-acceptor (EDA) interactions
  publication-title: Sci. Total. Environ.
– volume: 50
  start-page: 1
  year: 2017
  end-page: 10
  ident: b0160
  article-title: Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review
  publication-title: Environ. Toxicol. Phar.
– volume: 250
  year: 2020
  ident: b0155
  article-title: A review on contamination and removal of sulfamethoxazole from aqueous solution using cleaner techniques: Present and future perspective
  publication-title: J. Clean. Prod.
– volume: 6
  start-page: 28023
  year: 2016
  end-page: 28033
  ident: b0260
  article-title: Preparation of highly porous carbon from sustainable α-cellulose for superior removal performance of tetracycline and sulfamethazine from water
  publication-title: RSC Adv.
– volume: 390
  year: 2020
  ident: b0090
  article-title: Recent developments of two-dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from wastewater
  publication-title: Chem. Eng. J.
– volume: 248
  start-page: 168
  year: 2014
  end-page: 174
  ident: b0110
  article-title: Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar
  publication-title: Chem. Eng. J.
– volume: 54
  start-page: 7008
  year: 2020
  end-page: 7018
  ident: b0145
  article-title: Predicting Aqueous Adsorption of Organic Compounds onto Biochars, Carbon Nanotubes, Granular Activated Carbons, and Resins with Machine Learning
  publication-title: Environ. Sci. Technol.
– volume: 396
  year: 2020
  ident: b0170
  article-title: Effect of biochar-derived dissolved organic matter on adsorption of sulfamethoxazole and chloramphenicol
  publication-title: J. Hazard. Mater.
– volume: 32
  start-page: 5779
  year: 2018
  end-page: 5788
  ident: b0185
  article-title: Correlating asphaltene dimerization with its molecular structure by potential of mean force calculation and data mining
  publication-title: Energ. Fuel.
– volume: 248
  start-page: 128
  year: 2014
  end-page: 134
  ident: b0105
  article-title: Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole
  publication-title: Chem. Eng. J.
– volume: 21
  start-page: 4800
  year: 2019
  end-page: 4814
  ident: b0235
  article-title: A sustainable biochar catalyst synergized with copper heteroatoms and CO
  publication-title: Green Chem.
– volume: 122961
  year: 2020
  ident: b0035
  article-title: Conventional and Emerging Technologies for Removal of Antibiotics from Wastewater
  publication-title: J. Hazard. Mater.
– volume: 283
  start-page: 936
  year: 2016
  end-page: 947
  ident: b0080
  article-title: Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials
  publication-title: Chem. Eng. J.
– volume: 12
  year: 2017
  ident: b0210
  article-title: Sorption of tetracycline on biochar derived from rice straw under different temperatures
  publication-title: Plos One
– volume: 160
  start-page: 55
  year: 2017
  end-page: 63
  ident: b0175
  article-title: Comparison of characteristics of twenty-one types of biochar and their ability to remove multi-heavy metals and methylene blue in solution
  publication-title: Fuel Process. Technol.
– volume: 237
  start-page: 128
  year: 2019
  end-page: 138
  ident: b0050
  article-title: Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors
  publication-title: J. Environ. Manage.
– volume: 123455
  year: 2020
  ident: b0230
  article-title: Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water
  publication-title: Bioresource Technol.
– volume: 36
  start-page: 2
  year: 2020
  end-page: 18
  ident: b0065
  article-title: Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls
  publication-title: Soil Use Manage.
– volume: 123613
  year: 2020
  ident: b0165
  article-title: Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials
  publication-title: Bioresource Technol.
– volume: 7
  start-page: 943
  year: 2020
  ident: b0255
  article-title: Application of Biochar Derived From Pyrolysis of Waste Fiberboard on Tetracycline Adsorption in Aqueous Solution
  publication-title: Front. Chem.
– volume: 1–29
  year: 2020
  ident: b0070
  article-title: New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment
  publication-title: Soil Use Manage.
– volume: 124
  start-page: 673
  year: 2017
  end-page: 692
  ident: b0215
  article-title: Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials
  publication-title: Water Res.
– volume: 115
  start-page: 146
  year: 2018
  end-page: 157
  ident: b0265
  article-title: Tetracycline removal with activated carbons produced by hydrothermal carbonisation of Agave americana fibres and mimosa tannin
  publication-title: Ind. Crop. Prod.
– volume: 323
  start-page: 361
  year: 2017
  end-page: 380
  ident: b0030
  article-title: Treatment technologies for emerging contaminants in water: a review
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 2265
  year: 2018
  ident: b0180
  article-title: Suitability of Different Agricultural and Urban Organic Wastes as Feedstocks for the Production of Biochar—Part 1: Physicochemical Characterisation
  publication-title: Sustainability
– reference: C. Molnar, Interpretable machine learning. A Guide for Making Black Box Models Explainable, https://christophm.github.io/interpretable-ml-book/2019.
– volume: 711
  year: 2020
  ident: b0220
  article-title: Preparation and application of magnetic biochar in water treatment: A critical review
  publication-title: Sci. Total. Environ.
– volume: 68
  start-page: 135
  year: 2018
  end-page: 145
  ident: b0190
  article-title: Random forests: A machine learning methodology to highlight the volatile organic compounds involved in olfactory perception
  publication-title: Food Qual. Prefer.
– volume: 182
  year: 2020
  ident: b0195
  article-title: Fault diagnosis in low voltage smart distribution grids using gradient boosting trees
  publication-title: Electr. Pow. Syst. Res.
– volume: 307
  year: 2020
  ident: b0020
  article-title: A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts
  publication-title: Bioresour. Technol.
– volume: 36
  start-page: 320
  year: 2020
  end-page: 327
  ident: b0060
  article-title: Biochar effects on soil chemical properties and mobilization of cadmium (Cd) and lead (Pb) in paddy soil
  publication-title: Soil Use Manage.
– volume: 372
  start-page: 536
  year: 2019
  end-page: 550
  ident: b0045
  article-title: Biochar-based engineered composites for sorptive decontamination of water: A review
  publication-title: Chem. Eng. J.
– volume: 121
  start-page: 235
  year: 2012
  end-page: 240
  ident: b0295
  article-title: Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution
  publication-title: Bioresource Technol.
– volume: 35
  start-page: 3925
  year: 2019
  end-page: 3936
  ident: b0280
  article-title: Enhanced Adsorption of Aqueous Tetracycline Hydrochloride on Renewable Porous Clay-Carbon Adsorbent Derived from Spent Bleaching Earth via Pyrolysis
  publication-title: Langmuir
– volume: 1–12
  year: 2019
  ident: b0320
  article-title: Corncobs as a potentially low-cost biosorbent for sulfamethoxazole removal from aqueous solution
  publication-title: Sep. Sci. Technol.
– volume: 36
  start-page: 245
  year: 2015
  end-page: 253
  ident: b0315
  article-title: Sorption of sulphamethoxazole by the biochars derived from rice straw and alligator flag
  publication-title: Environ. Technol.
– start-page: 431
  year: 2013
  end-page: 439
  ident: b0245
  article-title: Understanding variable importances in forests of randomized trees
  publication-title: Advances in neural information processing systems
– volume: 378
  year: 2019
  ident: b0120
  article-title: The application of machine learning methods for prediction of metal sorption onto biochars
  publication-title: J. Hazard. Mater.
– volume: 381
  year: 2020
  ident: b0085
  article-title: Antagonistic and synergistic analysis of antibiotic adsorption on Prosopis juliflora activated carbon in multicomponent systems
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 31920
  year: 2016
  ident: b0300
  article-title: Adsorption of Antibiotics on Graphene and Biochar in Aqueous Solutions Induced by pi-pi Interactions
  publication-title: Sci. Rep.
– volume: 54
  start-page: 4583
  year: 2020
  end-page: 4591
  ident: b0140
  article-title: Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials
  publication-title: Environ. Sci. Technol.
– volume: 38
  start-page: 3043
  year: 2004
  end-page: 3050
  ident: b0270
  article-title: Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors
  publication-title: Water Res.
– volume: 368
  start-page: 847
  year: 2019
  end-page: 864
  ident: b0240
  article-title: Adsorption characteristics of supercritical CO
  publication-title: Chem. Eng. J.
– volume: 273
  year: 2020
  ident: b0130
  article-title: Machine learning exploration of the critical factors for CO
  publication-title: J. Clean. Product.
– volume: 153
  start-page: 365
  year: 2016
  end-page: 385
  ident: b0055
  article-title: Adsorptive removal of antibiotics from aqueous solution using carbon materials
  publication-title: Chemosphere
– volume: 664
  start-page: 312
  year: 2019
  end-page: 321
  ident: b0040
  article-title: Degradation of antibiotics by modified vacuum-UV based processes: mechanistic consequences of H
  publication-title: Sci. Total Environ.
– volume: 321
  start-page: 868
  year: 2017
  end-page: 878
  ident: b0225
  article-title: Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution
  publication-title: J. Hazard. Mater.
– volume: 288
  year: 2019
  ident: b0205
  article-title: Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions
  publication-title: Bioresource Technol.
– volume: 466
  start-page: 101
  year: 2016
  end-page: 112
  ident: b0275
  article-title: Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A
  publication-title: J. Colloid. Interface Sci.
– volume: 189
  start-page: 301
  year: 2017
  end-page: 308
  ident: b0015
  article-title: Antibiotics in the agricultural soils from the Yangtze River Delta, China
  publication-title: Chemosphere
– volume: 36
  start-page: 245
  year: 2015
  ident: 10.1016/j.cej.2020.126782_b0315
  article-title: Sorption of sulphamethoxazole by the biochars derived from rice straw and alligator flag
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2014.943299
– volume: 323
  start-page: 361
  year: 2017
  ident: 10.1016/j.cej.2020.126782_b0030
  article-title: Treatment technologies for emerging contaminants in water: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.04.106
– volume: 36
  start-page: 320
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0060
  article-title: Biochar effects on soil chemical properties and mobilization of cadmium (Cd) and lead (Pb) in paddy soil
  publication-title: Soil Use Manage.
  doi: 10.1111/sum.12557
– volume: 122961
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0035
  article-title: Conventional and Emerging Technologies for Removal of Antibiotics from Wastewater
  publication-title: J. Hazard. Mater.
– volume: 248
  start-page: 168
  year: 2014
  ident: 10.1016/j.cej.2020.126782_b0110
  article-title: Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.03.006
– volume: 189
  start-page: 301
  year: 2017
  ident: 10.1016/j.cej.2020.126782_b0015
  article-title: Antibiotics in the agricultural soils from the Yangtze River Delta, China
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.09.040
– volume: 719
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0100
  article-title: Enhanced adsorption of bisphenol A, tylosin, and tetracycline from aqueous solution to nitrogen-doped multiwall carbon nanotubes via cation-pi and pi-pi electron-donor-acceptor (EDA) interactions
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2020.137389
– ident: 10.1016/j.cej.2020.126782_b0250
– volume: 627
  start-page: 235
  year: 2018
  ident: 10.1016/j.cej.2020.126782_b0095
  article-title: Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2018.01.249
– volume: 396
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0170
  article-title: Effect of biochar-derived dissolved organic matter on adsorption of sulfamethoxazole and chloramphenicol
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122598
– volume: 35
  start-page: 3925
  year: 2019
  ident: 10.1016/j.cej.2020.126782_b0280
  article-title: Enhanced Adsorption of Aqueous Tetracycline Hydrochloride on Renewable Porous Clay-Carbon Adsorbent Derived from Spent Bleaching Earth via Pyrolysis
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b04179
– volume: 54
  start-page: 7008
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0145
  article-title: Predicting Aqueous Adsorption of Organic Compounds onto Biochars, Carbon Nanotubes, Granular Activated Carbons, and Resins with Machine Learning
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c02526
– volume: 6
  start-page: 31920
  year: 2016
  ident: 10.1016/j.cej.2020.126782_b0300
  article-title: Adsorption of Antibiotics on Graphene and Biochar in Aqueous Solutions Induced by pi-pi Interactions
  publication-title: Sci. Rep.
  doi: 10.1038/srep31920
– volume: 160
  start-page: 55
  year: 2017
  ident: 10.1016/j.cej.2020.126782_b0175
  article-title: Comparison of characteristics of twenty-one types of biochar and their ability to remove multi-heavy metals and methylene blue in solution
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2017.02.019
– volume: 321
  start-page: 868
  year: 2017
  ident: 10.1016/j.cej.2020.126782_b0225
  article-title: Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.10.006
– volume: 664
  start-page: 312
  year: 2019
  ident: 10.1016/j.cej.2020.126782_b0040
  article-title: Degradation of antibiotics by modified vacuum-UV based processes: mechanistic consequences of H2O2 and K2S2O8 in the presence of halide ions
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.006
– volume: 259
  start-page: 24
  year: 2018
  ident: 10.1016/j.cej.2020.126782_b0285
  article-title: Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2018.03.013
– volume: 68
  start-page: 135
  year: 2018
  ident: 10.1016/j.cej.2020.126782_b0190
  article-title: Random forests: A machine learning methodology to highlight the volatile organic compounds involved in olfactory perception
  publication-title: Food Qual. Prefer.
  doi: 10.1016/j.foodqual.2018.02.008
– volume: 121
  start-page: 235
  year: 2012
  ident: 10.1016/j.cej.2020.126782_b0295
  article-title: Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2012.06.085
– volume: 123455
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0230
  article-title: Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water
  publication-title: Bioresource Technol.
– volume: 50
  start-page: 13892
  year: 2011
  ident: 10.1016/j.cej.2020.126782_b0290
  article-title: Adsorption Interaction of Tetracyclines with Porous Synthetic Resins
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie202166g
– volume: 10
  start-page: 2265
  year: 2018
  ident: 10.1016/j.cej.2020.126782_b0180
  article-title: Suitability of Different Agricultural and Urban Organic Wastes as Feedstocks for the Production of Biochar—Part 1: Physicochemical Characterisation
  publication-title: Sustainability
  doi: 10.3390/su10072265
– volume: 43
  start-page: 479
  year: 2015
  ident: 10.1016/j.cej.2020.126782_b0025
  article-title: Antibiotic Pollution in the Environment: A Review
  publication-title: CLEAN - Soil, Air, Water
  doi: 10.1002/clen.201300989
– volume: 283
  start-page: 936
  year: 2016
  ident: 10.1016/j.cej.2020.126782_b0080
  article-title: Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.08.023
– volume: 372
  start-page: 536
  year: 2019
  ident: 10.1016/j.cej.2020.126782_b0045
  article-title: Biochar-based engineered composites for sorptive decontamination of water: A review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.04.097
– volume: 153
  start-page: 365
  year: 2016
  ident: 10.1016/j.cej.2020.126782_b0055
  article-title: Adsorptive removal of antibiotics from aqueous solution using carbon materials
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.03.083
– volume: 381
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0085
  article-title: Antagonistic and synergistic analysis of antibiotic adsorption on Prosopis juliflora activated carbon in multicomponent systems
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122713
– volume: 36
  start-page: 2
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0065
  article-title: Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls
  publication-title: Soil Use Manage.
  doi: 10.1111/sum.12546
– volume: 21
  start-page: 4800
  year: 2019
  ident: 10.1016/j.cej.2020.126782_b0235
  article-title: A sustainable biochar catalyst synergized with copper heteroatoms and CO2 for singlet oxygenation and electron transfer routes
  publication-title: Green Chem.
  doi: 10.1039/C9GC01843C
– ident: 10.1016/j.cej.2020.126782_b0125
– volume: 7
  start-page: 943
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0255
  article-title: Application of Biochar Derived From Pyrolysis of Waste Fiberboard on Tetracycline Adsorption in Aqueous Solution
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00943
– volume: 182
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0195
  article-title: Fault diagnosis in low voltage smart distribution grids using gradient boosting trees
  publication-title: Electr. Pow. Syst. Res.
  doi: 10.1016/j.epsr.2020.106254
– volume: 368
  start-page: 847
  year: 2019
  ident: 10.1016/j.cej.2020.126782_b0240
  article-title: Adsorption characteristics of supercritical CO2/CH4 on different types of coal and a machine learning approach
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.008
– volume: 123613
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0165
  article-title: Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials
  publication-title: Bioresource Technol.
– volume: 43
  start-page: 3
  year: 2000
  ident: 10.1016/j.cej.2020.126782_b0200
  article-title: Artificial neural networks: fundamentals, computing, design, and application
  publication-title: J. Microbiol. Methods
  doi: 10.1016/S0167-7012(00)00201-3
– volume: 124
  start-page: 673
  year: 2017
  ident: 10.1016/j.cej.2020.126782_b0215
  article-title: Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.07.070
– volume: 12
  year: 2017
  ident: 10.1016/j.cej.2020.126782_b0210
  article-title: Sorption of tetracycline on biochar derived from rice straw under different temperatures
  publication-title: Plos One
– volume: 250
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0155
  article-title: A review on contamination and removal of sulfamethoxazole from aqueous solution using cleaner techniques: Present and future perspective
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119553
– volume: 711
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0220
  article-title: Preparation and application of magnetic biochar in water treatment: A critical review
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2019.134847
– volume: 237
  start-page: 128
  year: 2019
  ident: 10.1016/j.cej.2020.126782_b0050
  article-title: Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2019.02.068
– volume: 6
  start-page: 28023
  year: 2016
  ident: 10.1016/j.cej.2020.126782_b0260
  article-title: Preparation of highly porous carbon from sustainable α-cellulose for superior removal performance of tetracycline and sulfamethazine from water
  publication-title: RSC Adv.
  doi: 10.1039/C6RA00277C
– volume: 288
  year: 2019
  ident: 10.1016/j.cej.2020.126782_b0205
  article-title: Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2019.121527
– volume: 9
  start-page: 17841
  year: 2019
  ident: 10.1016/j.cej.2020.126782_b0310
  article-title: Activated carbons derived from hydrothermal impregnation of sucrose with phosphoric acid: remarkable adsorbents for sulfamethoxazole removal
  publication-title: RSC Adv.
  doi: 10.1039/C9RA02610J
– volume: 388
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0135
  article-title: Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe3O4-g-CN@ PEI-β-CD nanocomposite: Modeling by response surface methodology (RSM), boosted regression tree (BRT), and general regression neural network (GRNN)
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121769
– volume: 54
  start-page: 4583
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0140
  article-title: Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b06287
– volume: 390
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0090
  article-title: Recent developments of two-dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from wastewater
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124642
– volume: 32
  start-page: 5779
  year: 2018
  ident: 10.1016/j.cej.2020.126782_b0185
  article-title: Correlating asphaltene dimerization with its molecular structure by potential of mean force calculation and data mining
  publication-title: Energ. Fuel.
  doi: 10.1021/acs.energyfuels.8b00470
– volume: 171
  start-page: 66
  year: 2017
  ident: 10.1016/j.cej.2020.126782_b0305
  article-title: The role of ash content on bisphenol A sorption to biochars derived from different agricultural wastes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.12.041
– volume: 79
  start-page: 7
  year: 2014
  ident: 10.1016/j.cej.2020.126782_b0005
  article-title: The environmental release and fate of antibiotics
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2014.01.005
– volume: 378
  year: 2019
  ident: 10.1016/j.cej.2020.126782_b0120
  article-title: The application of machine learning methods for prediction of metal sorption onto biochars
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.06.004
– volume: 38
  start-page: 3043
  year: 2004
  ident: 10.1016/j.cej.2020.126782_b0270
  article-title: Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.04.048
– volume: 49
  start-page: 6772
  year: 2015
  ident: 10.1016/j.cej.2020.126782_b0010
  article-title: Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00729
– volume: 273
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0130
  article-title: Machine learning exploration of the critical factors for CO2 adsorption capacity on porous carbon materials at different pressures
  publication-title: J. Clean. Product.
  doi: 10.1016/j.jclepro.2020.122915
– volume: 307
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0020
  article-title: A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.123228
– volume: 1–12
  year: 2019
  ident: 10.1016/j.cej.2020.126782_b0320
  article-title: Corncobs as a potentially low-cost biosorbent for sulfamethoxazole removal from aqueous solution
  publication-title: Sep. Sci. Technol.
– volume: 115
  start-page: 146
  year: 2018
  ident: 10.1016/j.cej.2020.126782_b0265
  article-title: Tetracycline removal with activated carbons produced by hydrothermal carbonisation of Agave americana fibres and mimosa tannin
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2018.02.005
– volume: 248
  start-page: 128
  year: 2014
  ident: 10.1016/j.cej.2020.126782_b0105
  article-title: Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.03.021
– start-page: 431
  year: 2013
  ident: 10.1016/j.cej.2020.126782_b0245
  article-title: Understanding variable importances in forests of randomized trees
  publication-title: Advances in neural information processing systems
– volume: 466
  start-page: 101
  year: 2016
  ident: 10.1016/j.cej.2020.126782_b0275
  article-title: Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A
  publication-title: J. Colloid. Interface Sci.
  doi: 10.1016/j.jcis.2015.12.003
– volume: 50
  start-page: 1
  year: 2017
  ident: 10.1016/j.cej.2020.126782_b0160
  article-title: Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review
  publication-title: Environ. Toxicol. Phar.
  doi: 10.1016/j.etap.2017.01.004
– volume: 1–29
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0070
  article-title: New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment
  publication-title: Soil Use Manage.
– volume: 379
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0075
  article-title: Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: Experimental study and modeling analysis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122320
– volume: 6
  start-page: eaax9324
  year: 2020
  ident: 10.1016/j.cej.2020.126782_b0150
  article-title: Inverse design of porous materials using artificial neural networks
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax9324
– volume: 246
  start-page: 150
  year: 2017
  ident: 10.1016/j.cej.2020.126782_b0115
  article-title: Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review
  publication-title: Bioresour Technol.
  doi: 10.1016/j.biortech.2017.07.150
SSID ssj0006919
Score 2.6820302
Snippet [Display omitted] •Antiobiotics adsorption on carbon-based materials was modeled by machine learning.•Random forest showed best prediction accuracy than GBT...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126782
SubjectTerms Activated carbon
Antibiotics removal
Engineered biochar
Industrial wastewater treatment
Random forest algorithm
Sustainable waste management
Title Machine learning for the selection of carbon-based materials for tetracycline and sulfamethoxazole adsorption
URI https://dx.doi.org/10.1016/j.cej.2020.126782
Volume 406
WOSCitedRecordID wos000600988800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3212
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006919
  issn: 1385-8947
  databaseCode: AIEXJ
  dateStart: 19970115
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZuoftYezKuht62NOKQ3xJJD2W0rENVgbtWOiLkSU5FzI7OE6b5j_tP-7Iuthrt7ENBsEEIVnmnA-d48_ngtBrSjIJsAiDKJSarVIyYFEeBnAcU-0waxw0zSbIyQmdTNinXu-by4W5WJKioNstW_1XVcMYKFunzv6Fuv1NYQD-g9LhCmqH6x8p_mMTHqlcP4ipDyRcNy1vrIMoeJWVRaCNmDwAr9U8mZmr6oqLK9E4oA2vvlnmvGk1veU7HY3I5bqsVl6lrtCBqz2g2hqHvjKF7hzCdQSQYVBPL-f1ziQaW1KCjTukxPlso2dN5sVu1n48Mlzt-awspjNees5hbSlvky1_cDT4MmgZXpMaUEwXzkRbhiMKdVC0yfE0tNuN1JvmpI7pKKDMlOscKDNGSRzEUfjD8Z40FQ1umgrDWiwGQi0GsKuuswGGO2rtoo9WPNV76a10t3lwr8gttBeREaN9tHf4_njywZv-MWs6yfhnc5_Rm4DCaxv93BHqODdn99E9-1aCDw2aHqCeKh6iu51alY_QV4sr7HCFASsYcIU9rnCZ4y6usMeVmdvBFQbF4-u4wi2uHqPPb4_Pjt4FtldHIEDAdSDzLBFynMuh4LmuSijoeMRkyGlEBE8YFRJElw-HchSLLCIhV4RznsQxyUIKTvMT1C_KQj1FGExeDr-IszBLiEyYzFgGbm6ei0wBGvfR0AkuFbaQve6nskxdxOIiBVmnWtapkfU-euOXrEwVl99NTpw2UuuGGvcyBej8etmzf1v2HN1pMf8C9etqo16i2-Kinq-rVxZg3wEjVq4X
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+the+selection+of+carbon-based+materials+for+tetracycline+and+sulfamethoxazole+adsorption&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Zhu%2C+Xinzhe&rft.au=Wan%2C+Zhonghao&rft.au=Tsang%2C+Daniel+C.W.&rft.au=He%2C+Mingjing&rft.date=2021-02-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=406&rft_id=info:doi/10.1016%2Fj.cej.2020.126782&rft.externalDocID=S1385894720329107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon