Machine learning for the selection of carbon-based materials for tetracycline and sulfamethoxazole adsorption
[Display omitted] •Antiobiotics adsorption on carbon-based materials was modeled by machine learning.•Random forest showed best prediction accuracy than GBT and ANN.•SBET , pHsol, C0 were critical factors for TC (74%) and SMX (80%) adsorption on CBMs.•Impact tendencies of SBET, pHsol, C0 on adsorpti...
Saved in:
| Published in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 406; p. 126782 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
15.02.2021
|
| Subjects: | |
| ISSN: | 1385-8947, 1873-3212 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
•Antiobiotics adsorption on carbon-based materials was modeled by machine learning.•Random forest showed best prediction accuracy than GBT and ANN.•SBET , pHsol, C0 were critical factors for TC (74%) and SMX (80%) adsorption on CBMs.•Impact tendencies of SBET, pHsol, C0 on adsorption were similar for TC and SMX.•Chemical compositions and pHpzc of CBMs showed different influences on TC and SMX.
Antibiotics as emerging pollutants have attracted extensive attention due to their ecotoxicity and persistence in the environment. Adsorption of antibiotics on carbon-based materials (CBMs) such as biochar and activated carbon was recognized as one of the most promising technologies for wastewater treatment. This study applied machine learning (ML) methods to develop generic prediction models of tetracycline (TC) and sulfamethoxazole (SMX) adsorption on CBMs. The results suggested that random forest outperformed gradient boosting trees and artificial neural network for both TC and SMX adsorption models. The random forest models could accurately predict the adsorption capacity of antibiotics on CBMs using material properties and adsorption conditions as model inputs. The developed ML models presented better generalization ability than traditional isotherm models under variable environmental conditions (e.g., temperature, solution pH) and adsorbent types. The relative importance analysis and partial dependence plots based on ML models were performed to compare TC and SMX adsorption on CBMs. The results indicated the critical role of specific surface area for both TC (24%) and SMX (45%) adsorption, while the other material properties (e.g., H/C, (O + N)/C, pHpzc) showed variable influences due to the differences in molecular structures, functional groups, and pKa values of TC and SMX. The accurate ML prediction models with generalization ability are useful for designing efficient CBMs with minimal experimental screening, while the relative importance and partial dependence plot analysis can guide rational applications of CBMs for antibiotics wastewater treatment. |
|---|---|
| AbstractList | [Display omitted]
•Antiobiotics adsorption on carbon-based materials was modeled by machine learning.•Random forest showed best prediction accuracy than GBT and ANN.•SBET , pHsol, C0 were critical factors for TC (74%) and SMX (80%) adsorption on CBMs.•Impact tendencies of SBET, pHsol, C0 on adsorption were similar for TC and SMX.•Chemical compositions and pHpzc of CBMs showed different influences on TC and SMX.
Antibiotics as emerging pollutants have attracted extensive attention due to their ecotoxicity and persistence in the environment. Adsorption of antibiotics on carbon-based materials (CBMs) such as biochar and activated carbon was recognized as one of the most promising technologies for wastewater treatment. This study applied machine learning (ML) methods to develop generic prediction models of tetracycline (TC) and sulfamethoxazole (SMX) adsorption on CBMs. The results suggested that random forest outperformed gradient boosting trees and artificial neural network for both TC and SMX adsorption models. The random forest models could accurately predict the adsorption capacity of antibiotics on CBMs using material properties and adsorption conditions as model inputs. The developed ML models presented better generalization ability than traditional isotherm models under variable environmental conditions (e.g., temperature, solution pH) and adsorbent types. The relative importance analysis and partial dependence plots based on ML models were performed to compare TC and SMX adsorption on CBMs. The results indicated the critical role of specific surface area for both TC (24%) and SMX (45%) adsorption, while the other material properties (e.g., H/C, (O + N)/C, pHpzc) showed variable influences due to the differences in molecular structures, functional groups, and pKa values of TC and SMX. The accurate ML prediction models with generalization ability are useful for designing efficient CBMs with minimal experimental screening, while the relative importance and partial dependence plot analysis can guide rational applications of CBMs for antibiotics wastewater treatment. |
| ArticleNumber | 126782 |
| Author | Hou, Deyi Zhu, Xinzhe Su, Zhishan Wan, Zhonghao He, Mingjing Tsang, Daniel C.W. Shang, Jin |
| Author_xml | – sequence: 1 givenname: Xinzhe surname: Zhu fullname: Zhu, Xinzhe organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China – sequence: 2 givenname: Zhonghao surname: Wan fullname: Wan, Zhonghao organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China – sequence: 3 givenname: Daniel C.W. surname: Tsang fullname: Tsang, Daniel C.W. email: dan.tsang@polyu.edu.hk organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China – sequence: 4 givenname: Mingjing surname: He fullname: He, Mingjing organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China – sequence: 5 givenname: Deyi surname: Hou fullname: Hou, Deyi organization: School of Environment, Tsinghua University, Beijing 100084, China – sequence: 6 givenname: Zhishan surname: Su fullname: Su, Zhishan organization: Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan 610064, China – sequence: 7 givenname: Jin surname: Shang fullname: Shang, Jin organization: City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, China |
| BookMark | eNp9kM1OxCAURonRRB19AHd9gY5AO4XGlTH-JRo3uia3l4vDpAMGqlGfXppx5cIVcMP5cr9zzPZDDMTYmeBLwUV3vlkibZaSy_KWndJyjx0JrZq6kULul3ujV7XuW3XIjnPecM67XvRHbPsIuPaBqpEgBR9eKxdTNa2pyjQSTj6GKroKIQ0x1ANkstUWJkoexrz7S1MC_MJxToFgq_w-OtjStI6f8B3HMrQ5prc56oQduMLR6e-5YC83189Xd_XD0-391eVDjS3vptq6oUXbOcsRHO-UQt2teitAS4XQ9hqt7IXj3K4aHKQSQAoA2qZRg9C6bxZM7HIxxZwTOfOW_BbSlxHczL7MxhRfZvZldr4Ko_4w6CeYty79_PgvebEjqVT68JRMRk8ByfpUFBob_T_0D4uziiM |
| CitedBy_id | crossref_primary_10_1016_j_jcis_2024_07_050 crossref_primary_10_1016_j_scitotenv_2024_174679 crossref_primary_10_1016_j_clwat_2025_100073 crossref_primary_10_1016_j_scitotenv_2024_175402 crossref_primary_10_1016_j_jece_2024_112732 crossref_primary_10_1016_j_jwpe_2025_108079 crossref_primary_10_1016_j_envres_2024_118593 crossref_primary_10_1016_j_envpol_2023_122869 crossref_primary_10_1016_j_envres_2021_110996 crossref_primary_10_1016_j_psep_2023_02_065 crossref_primary_10_1007_s42773_022_00183_w crossref_primary_10_3390_su162310681 crossref_primary_10_1016_j_cej_2024_149862 crossref_primary_10_1016_j_surfin_2024_104293 crossref_primary_10_1016_j_cej_2024_149586 crossref_primary_10_1016_j_chemosphere_2022_137044 crossref_primary_10_1016_j_jtice_2021_11_022 crossref_primary_10_3390_nano11010030 crossref_primary_10_1016_j_ces_2025_122381 crossref_primary_10_1016_j_jcis_2023_05_052 crossref_primary_10_1016_j_biortech_2024_130776 crossref_primary_10_1016_j_cej_2024_150626 crossref_primary_10_1016_j_enconman_2024_118302 crossref_primary_10_1016_j_seppur_2025_135077 crossref_primary_10_1016_j_scitotenv_2024_173471 crossref_primary_10_1016_j_seppur_2025_132089 crossref_primary_10_1016_j_jcis_2024_02_084 crossref_primary_10_1016_j_envpol_2024_124148 crossref_primary_10_1016_j_biortech_2022_127348 crossref_primary_10_1016_j_chemosphere_2023_141010 crossref_primary_10_1016_j_biortech_2022_126923 crossref_primary_10_1016_j_molstruc_2024_139850 crossref_primary_10_1016_j_seppur_2024_130850 crossref_primary_10_1016_j_scitotenv_2023_163895 crossref_primary_10_1021_acs_est_5c03992 crossref_primary_10_1016_j_jhazmat_2023_132773 crossref_primary_10_1016_j_cej_2025_160677 crossref_primary_10_1039_D5RA00489F crossref_primary_10_1021_acs_iecr_5c00563 crossref_primary_10_1016_j_cej_2023_143073 crossref_primary_10_1016_j_seppur_2022_120775 crossref_primary_10_1007_s11696_021_02024_9 crossref_primary_10_1016_j_jenvman_2024_122405 crossref_primary_10_1016_j_jwpe_2024_106312 crossref_primary_10_1016_j_watres_2024_122521 crossref_primary_10_1038_s41545_024_00429_z crossref_primary_10_3390_ijms252111696 crossref_primary_10_1039_D5RA00705D crossref_primary_10_1016_j_energy_2024_133707 crossref_primary_10_1155_2022_6292200 crossref_primary_10_1016_j_biortech_2022_128504 crossref_primary_10_1016_j_eswa_2022_119453 crossref_primary_10_1016_j_biortech_2021_125832 crossref_primary_10_1007_s11356_024_32951_5 crossref_primary_10_1016_j_hybadv_2023_100026 crossref_primary_10_1016_j_biortech_2025_133183 crossref_primary_10_1016_j_chemosphere_2023_138716 crossref_primary_10_1016_j_renene_2022_11_061 crossref_primary_10_1016_j_seppur_2024_127790 crossref_primary_10_1016_j_jece_2021_107043 crossref_primary_10_1039_D1EN00459J crossref_primary_10_1007_s44246_025_00213_9 crossref_primary_10_3390_su142315598 crossref_primary_10_1080_10643389_2023_2190313 crossref_primary_10_1016_j_molstruc_2024_139062 crossref_primary_10_1016_j_cej_2021_131967 crossref_primary_10_1016_j_jenvman_2024_121162 crossref_primary_10_1016_j_scitotenv_2024_173955 crossref_primary_10_1016_j_colsurfa_2021_127263 crossref_primary_10_1016_j_molliq_2023_123008 crossref_primary_10_1016_j_jenvman_2023_118895 crossref_primary_10_1016_j_seppur_2022_120796 crossref_primary_10_1016_j_biortech_2025_133207 crossref_primary_10_1016_j_cej_2023_142486 crossref_primary_10_1016_j_biortech_2022_128454 crossref_primary_10_1016_j_dwt_2024_100536 crossref_primary_10_1016_j_jece_2024_113152 crossref_primary_10_1016_j_totert_2022_100001 crossref_primary_10_1007_s12665_025_12423_w crossref_primary_10_1016_j_jece_2024_114925 crossref_primary_10_1016_j_cej_2021_131285 crossref_primary_10_1016_j_eti_2023_103425 crossref_primary_10_1016_j_jenvman_2023_119065 crossref_primary_10_1007_s11356_023_31131_1 crossref_primary_10_1016_j_ceramint_2021_10_083 crossref_primary_10_1016_j_jhazmat_2022_130031 crossref_primary_10_1016_j_jiec_2025_04_039 crossref_primary_10_3390_su142316055 crossref_primary_10_1016_j_buildenv_2022_108941 crossref_primary_10_1016_j_scitotenv_2023_166467 crossref_primary_10_1016_j_seppur_2023_124891 crossref_primary_10_1016_j_envres_2022_113953 crossref_primary_10_1016_j_jhazmat_2022_129299 crossref_primary_10_1016_j_seppur_2024_127666 crossref_primary_10_1016_j_ijbiomac_2023_124145 crossref_primary_10_1021_acs_inorgchem_5c00994 crossref_primary_10_1155_2022_8107196 crossref_primary_10_1016_j_jwpe_2024_106653 crossref_primary_10_1002_smll_202504877 crossref_primary_10_1016_j_jhazmat_2025_139358 crossref_primary_10_1016_j_ces_2024_120295 crossref_primary_10_1016_j_compchemeng_2021_107289 crossref_primary_10_1016_j_jwpe_2025_107462 crossref_primary_10_1016_j_materresbull_2024_112974 crossref_primary_10_1016_j_cej_2024_150496 crossref_primary_10_1016_j_biortech_2022_128008 crossref_primary_10_1016_j_colsurfa_2025_138197 crossref_primary_10_1016_j_foodchem_2023_135554 crossref_primary_10_1155_2022_3410872 crossref_primary_10_3390_separations10050300 crossref_primary_10_1016_j_resconrec_2022_106847 crossref_primary_10_1016_j_apcatb_2022_122184 crossref_primary_10_1039_D3QI01705B crossref_primary_10_1016_j_resconrec_2022_106206 crossref_primary_10_1016_j_jclepro_2022_134351 crossref_primary_10_1016_j_jenvman_2023_117505 crossref_primary_10_1002_pc_28945 crossref_primary_10_1016_j_envres_2024_120108 crossref_primary_10_1016_j_synthmet_2025_117874 crossref_primary_10_1016_j_jhazmat_2022_128747 crossref_primary_10_1016_j_scitotenv_2021_150554 crossref_primary_10_1016_j_scitotenv_2023_169035 crossref_primary_10_1016_j_watres_2023_120930 crossref_primary_10_1016_j_nanoen_2024_109670 crossref_primary_10_1016_j_carbpol_2022_119240 crossref_primary_10_1016_j_geoen_2023_211790 crossref_primary_10_1016_j_eswa_2024_123800 crossref_primary_10_1016_j_biortech_2023_130291 crossref_primary_10_1016_j_jhazmat_2021_126824 crossref_primary_10_1016_j_jwpe_2025_107970 crossref_primary_10_1016_j_seppur_2025_133019 crossref_primary_10_3390_nano11102734 crossref_primary_10_1016_j_jcis_2024_09_136 crossref_primary_10_32604_jrm_2022_018625 crossref_primary_10_1155_2022_3901608 crossref_primary_10_3390_c10010010 crossref_primary_10_1016_j_jhazmat_2024_135787 crossref_primary_10_1016_j_mser_2025_101010 crossref_primary_10_1088_1361_6528_ac46d7 crossref_primary_10_1016_j_colsurfa_2022_130915 crossref_primary_10_1155_2022_8448489 crossref_primary_10_1016_j_biortech_2024_130865 crossref_primary_10_1016_j_chemosphere_2021_131759 crossref_primary_10_1016_j_chemosphere_2023_139163 crossref_primary_10_1088_1361_648X_ada65b crossref_primary_10_1016_j_jclepro_2025_145999 crossref_primary_10_1016_j_surfin_2025_106535 crossref_primary_10_1080_17583004_2024_2364784 crossref_primary_10_1016_j_cej_2023_147503 crossref_primary_10_1016_j_biortech_2021_126046 crossref_primary_10_1016_j_cej_2023_144636 crossref_primary_10_1016_j_scp_2023_101127 crossref_primary_10_1016_j_seppur_2025_133882 crossref_primary_10_1016_j_conbuildmat_2022_129480 crossref_primary_10_1016_j_jece_2023_110459 crossref_primary_10_1016_j_rineng_2024_103538 crossref_primary_10_1016_j_biortech_2022_128547 crossref_primary_10_1016_j_jhazmat_2024_133797 crossref_primary_10_1016_j_jhazmat_2021_127060 crossref_primary_10_1016_j_seppur_2025_133925 crossref_primary_10_1016_j_colsurfa_2024_135059 crossref_primary_10_1016_j_scitotenv_2022_160257 crossref_primary_10_1016_j_cej_2022_137505 crossref_primary_10_1038_s41598_023_38579_8 crossref_primary_10_1016_j_jhazmat_2024_135853 crossref_primary_10_1016_j_scitotenv_2023_163562 crossref_primary_10_1002_bbb_70015 crossref_primary_10_1016_j_jhazmat_2025_137479 crossref_primary_10_1016_j_compscitech_2022_109414 crossref_primary_10_1007_s41872_025_00313_w crossref_primary_10_1016_j_jece_2025_118251 crossref_primary_10_1016_j_biombioe_2025_108129 crossref_primary_10_1016_j_jhazmat_2024_135440 crossref_primary_10_1016_j_biortech_2022_128417 crossref_primary_10_1016_j_fuel_2023_128005 crossref_primary_10_1016_j_jtice_2024_105345 crossref_primary_10_1021_acsestwater_5c00244 crossref_primary_10_1016_j_mineng_2025_109601 crossref_primary_10_1007_s42107_025_01489_3 crossref_primary_10_1016_j_watres_2025_124079 crossref_primary_10_1016_j_nantod_2022_101430 crossref_primary_10_1016_j_chemosphere_2021_132203 crossref_primary_10_1016_j_seppur_2023_123245 crossref_primary_10_1038_s41598_025_91229_z crossref_primary_10_1016_j_cej_2023_147333 |
| Cites_doi | 10.1080/09593330.2014.943299 10.1016/j.cej.2017.04.106 10.1111/sum.12557 10.1016/j.cej.2014.03.006 10.1016/j.chemosphere.2017.09.040 10.1016/j.scitotenv.2020.137389 10.1016/j.scitotenv.2018.01.249 10.1016/j.jhazmat.2020.122598 10.1021/acs.langmuir.8b04179 10.1021/acs.est.0c02526 10.1038/srep31920 10.1016/j.fuproc.2017.02.019 10.1016/j.jhazmat.2016.10.006 10.1016/j.scitotenv.2019.02.006 10.1016/j.biortech.2018.03.013 10.1016/j.foodqual.2018.02.008 10.1016/j.biortech.2012.06.085 10.1021/ie202166g 10.3390/su10072265 10.1002/clen.201300989 10.1016/j.cej.2015.08.023 10.1016/j.cej.2019.04.097 10.1016/j.chemosphere.2016.03.083 10.1016/j.cej.2019.122713 10.1111/sum.12546 10.1039/C9GC01843C 10.3389/fchem.2019.00943 10.1016/j.epsr.2020.106254 10.1016/j.cej.2019.03.008 10.1016/S0167-7012(00)00201-3 10.1016/j.watres.2017.07.070 10.1016/j.jclepro.2019.119553 10.1016/j.scitotenv.2019.134847 10.1016/j.jenvman.2019.02.068 10.1039/C6RA00277C 10.1016/j.biortech.2019.121527 10.1039/C9RA02610J 10.1016/j.jhazmat.2019.121769 10.1021/acs.est.9b06287 10.1016/j.cej.2020.124642 10.1021/acs.energyfuels.8b00470 10.1016/j.chemosphere.2016.12.041 10.1016/j.marpolbul.2014.01.005 10.1016/j.jhazmat.2019.06.004 10.1016/j.watres.2004.04.048 10.1021/acs.est.5b00729 10.1016/j.jclepro.2020.122915 10.1016/j.biortech.2020.123228 10.1016/j.indcrop.2018.02.005 10.1016/j.cej.2014.03.021 10.1016/j.jcis.2015.12.003 10.1016/j.etap.2017.01.004 10.1016/j.cej.2019.122320 10.1126/sciadv.aax9324 10.1016/j.biortech.2017.07.150 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cej.2020.126782 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-3212 |
| ExternalDocumentID | 10_1016_j_cej_2020_126782 S1385894720329107 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- 9DU AATTM AAXKI AAYWO AAYXX ABXDB ACLOT ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP CITATION EFKBS EJD FEDTE FGOYB HVGLF HZ~ R2- SEW ZY4 ~HD |
| ID | FETCH-LOGICAL-c406t-dfb4cd6fd0caf0677c8659d1a827ca498cd291f00d53cb271ae7aaa4337b18893 |
| ISICitedReferencesCount | 209 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600988800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1385-8947 |
| IngestDate | Sat Nov 29 07:01:08 EST 2025 Tue Nov 18 22:33:02 EST 2025 Fri Feb 23 02:47:10 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ANN BC O/C pHpzc C0 Sustainable waste management CBM WF MBC C wt. T Activated carbon Antibiotics removal GBT SBET PDP ML AC GO CN TC Engineered biochar Random forest algorithm RF pHsol (O+N)/C H/C Industrial wastewater treatment SMX |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c406t-dfb4cd6fd0caf0677c8659d1a827ca498cd291f00d53cb271ae7aaa4337b18893 |
| OpenAccessLink | https://scholars.cityu.edu.hk/en/publications/machine-learning-for-the-selection-of-carbon-based-materials-for- |
| ParticipantIDs | crossref_primary_10_1016_j_cej_2020_126782 crossref_citationtrail_10_1016_j_cej_2020_126782 elsevier_sciencedirect_doi_10_1016_j_cej_2020_126782 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-15 |
| PublicationDateYYYYMMDD | 2021-02-15 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Lian, Sun, Song, Zhu, Qi, Xing (b0105) 2014; 248 Kah, Sigmund, Xiao, Hofmann (b0215) 2017; 124 Yu, Li, Han, Ma (b0055) 2016; 153 Zhu, Tsang, Wang, Su, Hou, Li, Shang (b0130) 2020; 273 J. Friedman, T. Hastie, R. Tibshirani, The elements of statistical learning, Springer series in statistics New York 2001. Sapountzoglou, Lago, Raison (b0195) 2020; 182 Kim, Lee, Kim (b0150) 2020; 6 López-Cano, Cayuela, Mondini, Takaya, Ross, Sánchez-Monedero (b0180) 2018; 10 C. Molnar, Interpretable machine learning. A Guide for Making Black Box Models Explainable, https://christophm.github.io/interpretable-ml-book/2019. Gonzalez-Serrano, Cordero, Rodriguez-Mirasol, Cotoruelo, Rodriguez (b0270) 2004; 38 Garcia, Garcia-Galan, Day, Boopathy, White, Wallace, Hunter (b0020) 2020; 307 Peñafiel, Matesanz, Vanegas, Bermejo, Ormad (b0320) 2019; 1–12 Rodriguez-Narvaez, Peralta-Hernandez, Goonetilleke, Bandala (b0030) 2017; 323 Kumar, Xiong, Wan, Sun, Tsang, Gupta, Gao, Cao, Tang, Ok (b0165) 2020; 123613 Jang, Yoo, Choi, Park, Kan (b0285) 2018; 259 Peng, Chen, Que, Yang, Deng, Deng, Shi, Xu, Wu (b0300) 2016; 6 Xu, Gao, Lin, Gao, Zhang, Karnowo, Hu, Sun, Syed-Hassan, Zhang (b0255) 2020; 7 Wang, Chu, Fang, Huang, Song, Xue (b0210) 2017; 12 Prasannamedha, Kumar (b0155) 2020; 250 Jing, Chen, Wen, Liu, Hu, Yang, Guo, Luo, Yu, Xu (b0060) 2020; 36 Yazidi, Atrous, Edi Soetaredjo, Sellaoui, Ismadji, Erto, Bonilla-Petriciolet, Luiz Dotto, Ben Lamine (b0075) 2020; 379 Jing, Wang, Liu, Wang, Jiang (b0110) 2014; 248 He, Dai, Zhang, Sun, Xie, Tian, Yan, Huo (b0260) 2016; 6 Yang, Zhang, Jian, Wang, Xing, Sun, Hao (b0170) 2020; 396 Bao, Chong, Mohamed, Pau-Loke, Jo-Shu, Tau, Su, Joon (b0035) 2020; 122961 Meng, Qiu, Zhong, Liu, Liu, Chen (b0240) 2019; 368 Li, Han, Liang, Shohag, Yang (b0315) 2015; 36 Ye, Camps-Arbestain, Shen, Lehmann, Singh, Sabir (b0065) 2020; 36 Vigneau, Courcoux, Symoneaux, Guérin, Villière (b0190) 2018; 68 Premarathna, Rajapaksha, Sarkar, Kwon, Bhatnagar, Ok, Vithanage (b0045) 2019; 372 Dai, Meng, Zhang, Huang (b0230) 2020; 123455 Zhang, Ying, Pan, Liu, Zhao (b0010) 2015; 49 Yi, Zuo, Wei, Fu, Qu, Zheng, Xu, Guo, Li, Zhu (b0100) 2020; 719 Wang, Ok, Tsang, Alessi, Rinklebe, Wang, Mašek, Hou, O’Connor, Hou (b0070) 2020; 1–29 Selmi, Sanchez-Sanchez, Gadonneix, Jagiello, Seffen, Sammouda, Celzard, Fierro (b0265) 2018; 115 Yang, Zheng, Lu, Xue, Li (b0290) 2011; 50 Foroughi, Azqhandi, Kakhki (b0135) 2020; 388 Wan, Wu, Liu, Chen, Zhao, Xiao (b0280) 2019; 35 Sun, Zeng, Tsang, Zhu, Li (b0015) 2017; 189 Gothwal, Shashidhar (b0025) 2015; 43 Xiang, Xu, Wei, Zhou, Yang, Yang, Yang, Zhang, Luo, Zhou (b0050) 2019; 237 Basheer, Hajmeer (b0200) 2000; 43 Manjunath, Singh Baghel, Kumar (b0085) 2020; 381 Louppe, Wehenkel, Sutera, Geurts (b0245) 2013 Arampatzidou, Deliyanni (b0275) 2016; 466 Li, Liang, Jin, Zhou, Li, Wu, Pan (b0305) 2017; 171 Ahmed (b0160) 2017; 50 Sigmund, Gharasoo, Huffer, Hofmann (b0140) 2020; 54 Sun, Cho, Graham, Hou, Yip, Khan, Song, Li, Tsang (b0040) 2019; 664 Xiong, Zeng, Yang, Zhou, Zhang, Cheng, Liu, Hu, Wan, Zhou, Xu, Li (b0095) 2018; 627 Zhang, Zhong, Zhang (b0145) 2020; 54 Zhu, Wu, Coulon, Wu, Chen (b0185) 2018; 32 Wan, Sun, Tsang, Iris, Fan, Clark, Zhou, Cao, Gao, Ok (b0235) 2019; 21 Zhu, Li, Wang (b0205) 2019; 288 Peiris, Gunatilake, Mlsna, Mohan, Vithanage (b0115) 2017; 246 Manzetti, Ghisi (b0005) 2014; 79 Liu, Liu, Jiang, Chen, Li, Yu (b0295) 2012; 121 Reguyal, Sarmah, Gao (b0225) 2017; 321 Zhu, Wang, Ok (b0120) 2019; 378 Shi, Liu, Wang, Zhang (b0310) 2019; 9 Zhang, Li, Wang, Zhao, Hu, Lu, Wen, Chen, Wang (b0090) 2020; 390 Wang, Liu (b0175) 2017; 160 Li, Wang, Zhang, Liu, Liu, Chen (b0220) 2020; 711 Álvarez-Torrellas, Rodríguez, Ovejero, García (b0080) 2016; 283 Jing (10.1016/j.cej.2020.126782_b0110) 2014; 248 Zhu (10.1016/j.cej.2020.126782_b0205) 2019; 288 Vigneau (10.1016/j.cej.2020.126782_b0190) 2018; 68 Prasannamedha (10.1016/j.cej.2020.126782_b0155) 2020; 250 Gothwal (10.1016/j.cej.2020.126782_b0025) 2015; 43 Ye (10.1016/j.cej.2020.126782_b0065) 2020; 36 Zhu (10.1016/j.cej.2020.126782_b0120) 2019; 378 Garcia (10.1016/j.cej.2020.126782_b0020) 2020; 307 Kim (10.1016/j.cej.2020.126782_b0150) 2020; 6 Premarathna (10.1016/j.cej.2020.126782_b0045) 2019; 372 Arampatzidou (10.1016/j.cej.2020.126782_b0275) 2016; 466 Kah (10.1016/j.cej.2020.126782_b0215) 2017; 124 Xu (10.1016/j.cej.2020.126782_b0255) 2020; 7 Meng (10.1016/j.cej.2020.126782_b0240) 2019; 368 Wan (10.1016/j.cej.2020.126782_b0280) 2019; 35 Zhang (10.1016/j.cej.2020.126782_b0145) 2020; 54 Shi (10.1016/j.cej.2020.126782_b0310) 2019; 9 Selmi (10.1016/j.cej.2020.126782_b0265) 2018; 115 10.1016/j.cej.2020.126782_b0250 Yu (10.1016/j.cej.2020.126782_b0055) 2016; 153 Dai (10.1016/j.cej.2020.126782_b0230) 2020; 123455 Álvarez-Torrellas (10.1016/j.cej.2020.126782_b0080) 2016; 283 Kumar (10.1016/j.cej.2020.126782_b0165) 2020; 123613 Zhang (10.1016/j.cej.2020.126782_b0090) 2020; 390 Peñafiel (10.1016/j.cej.2020.126782_b0320) 2019; 1–12 Zhu (10.1016/j.cej.2020.126782_b0185) 2018; 32 Wan (10.1016/j.cej.2020.126782_b0235) 2019; 21 Li (10.1016/j.cej.2020.126782_b0220) 2020; 711 López-Cano (10.1016/j.cej.2020.126782_b0180) 2018; 10 Wang (10.1016/j.cej.2020.126782_b0210) 2017; 12 Peng (10.1016/j.cej.2020.126782_b0300) 2016; 6 Xiong (10.1016/j.cej.2020.126782_b0095) 2018; 627 Wang (10.1016/j.cej.2020.126782_b0175) 2017; 160 Manzetti (10.1016/j.cej.2020.126782_b0005) 2014; 79 Sun (10.1016/j.cej.2020.126782_b0040) 2019; 664 Bao (10.1016/j.cej.2020.126782_b0035) 2020; 122961 Li (10.1016/j.cej.2020.126782_b0315) 2015; 36 Gonzalez-Serrano (10.1016/j.cej.2020.126782_b0270) 2004; 38 Basheer (10.1016/j.cej.2020.126782_b0200) 2000; 43 Li (10.1016/j.cej.2020.126782_b0305) 2017; 171 Yang (10.1016/j.cej.2020.126782_b0290) 2011; 50 Wang (10.1016/j.cej.2020.126782_b0070) 2020; 1–29 Reguyal (10.1016/j.cej.2020.126782_b0225) 2017; 321 Zhu (10.1016/j.cej.2020.126782_b0130) 2020; 273 Louppe (10.1016/j.cej.2020.126782_b0245) 2013 Jang (10.1016/j.cej.2020.126782_b0285) 2018; 259 Jing (10.1016/j.cej.2020.126782_b0060) 2020; 36 Foroughi (10.1016/j.cej.2020.126782_b0135) 2020; 388 He (10.1016/j.cej.2020.126782_b0260) 2016; 6 Sun (10.1016/j.cej.2020.126782_b0015) 2017; 189 Sigmund (10.1016/j.cej.2020.126782_b0140) 2020; 54 Manjunath (10.1016/j.cej.2020.126782_b0085) 2020; 381 Peiris (10.1016/j.cej.2020.126782_b0115) 2017; 246 Sapountzoglou (10.1016/j.cej.2020.126782_b0195) 2020; 182 Zhang (10.1016/j.cej.2020.126782_b0010) 2015; 49 Liu (10.1016/j.cej.2020.126782_b0295) 2012; 121 Xiang (10.1016/j.cej.2020.126782_b0050) 2019; 237 Rodriguez-Narvaez (10.1016/j.cej.2020.126782_b0030) 2017; 323 Yi (10.1016/j.cej.2020.126782_b0100) 2020; 719 Lian (10.1016/j.cej.2020.126782_b0105) 2014; 248 Yazidi (10.1016/j.cej.2020.126782_b0075) 2020; 379 10.1016/j.cej.2020.126782_b0125 Ahmed (10.1016/j.cej.2020.126782_b0160) 2017; 50 Yang (10.1016/j.cej.2020.126782_b0170) 2020; 396 |
| References_xml | – volume: 6 start-page: eaax9324 year: 2020 ident: b0150 article-title: Inverse design of porous materials using artificial neural networks publication-title: Sci. Adv. – volume: 43 start-page: 479 year: 2015 end-page: 489 ident: b0025 article-title: Antibiotic Pollution in the Environment: A Review publication-title: CLEAN - Soil, Air, Water – volume: 627 start-page: 235 year: 2018 end-page: 244 ident: b0095 article-title: Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent publication-title: Sci. Total. Environ. – volume: 43 start-page: 3 year: 2000 end-page: 31 ident: b0200 article-title: Artificial neural networks: fundamentals, computing, design, and application publication-title: J. Microbiol. Methods – volume: 49 start-page: 6772 year: 2015 end-page: 6782 ident: b0010 article-title: Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance publication-title: Environ. Sci. Technol. – reference: J. Friedman, T. Hastie, R. Tibshirani, The elements of statistical learning, Springer series in statistics New York 2001. – volume: 171 start-page: 66 year: 2017 end-page: 73 ident: b0305 article-title: The role of ash content on bisphenol A sorption to biochars derived from different agricultural wastes publication-title: Chemosphere – volume: 9 start-page: 17841 year: 2019 end-page: 17851 ident: b0310 article-title: Activated carbons derived from hydrothermal impregnation of sucrose with phosphoric acid: remarkable adsorbents for sulfamethoxazole removal publication-title: RSC Adv. – volume: 259 start-page: 24 year: 2018 end-page: 31 ident: b0285 article-title: Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar publication-title: Bioresource Technol. – volume: 388 year: 2020 ident: b0135 article-title: Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe3O4-g-CN@ PEI-β-CD nanocomposite: Modeling by response surface methodology (RSM), boosted regression tree (BRT), and general regression neural network (GRNN) publication-title: J. Hazard. Mater. – volume: 379 year: 2020 ident: b0075 article-title: Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: Experimental study and modeling analysis publication-title: Chem. Eng. J. – volume: 246 start-page: 150 year: 2017 end-page: 159 ident: b0115 article-title: Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review publication-title: Bioresour Technol. – volume: 79 start-page: 7 year: 2014 end-page: 15 ident: b0005 article-title: The environmental release and fate of antibiotics publication-title: Mar. Pollut. Bull. – volume: 50 start-page: 13892 year: 2011 end-page: 13898 ident: b0290 article-title: Adsorption Interaction of Tetracyclines with Porous Synthetic Resins publication-title: Ind. Eng. Chem. Res. – volume: 719 year: 2020 ident: b0100 article-title: Enhanced adsorption of bisphenol A, tylosin, and tetracycline from aqueous solution to nitrogen-doped multiwall carbon nanotubes via cation-pi and pi-pi electron-donor-acceptor (EDA) interactions publication-title: Sci. Total. Environ. – volume: 50 start-page: 1 year: 2017 end-page: 10 ident: b0160 article-title: Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review publication-title: Environ. Toxicol. Phar. – volume: 250 year: 2020 ident: b0155 article-title: A review on contamination and removal of sulfamethoxazole from aqueous solution using cleaner techniques: Present and future perspective publication-title: J. Clean. Prod. – volume: 6 start-page: 28023 year: 2016 end-page: 28033 ident: b0260 article-title: Preparation of highly porous carbon from sustainable α-cellulose for superior removal performance of tetracycline and sulfamethazine from water publication-title: RSC Adv. – volume: 390 year: 2020 ident: b0090 article-title: Recent developments of two-dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from wastewater publication-title: Chem. Eng. J. – volume: 248 start-page: 168 year: 2014 end-page: 174 ident: b0110 article-title: Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar publication-title: Chem. Eng. J. – volume: 54 start-page: 7008 year: 2020 end-page: 7018 ident: b0145 article-title: Predicting Aqueous Adsorption of Organic Compounds onto Biochars, Carbon Nanotubes, Granular Activated Carbons, and Resins with Machine Learning publication-title: Environ. Sci. Technol. – volume: 396 year: 2020 ident: b0170 article-title: Effect of biochar-derived dissolved organic matter on adsorption of sulfamethoxazole and chloramphenicol publication-title: J. Hazard. Mater. – volume: 32 start-page: 5779 year: 2018 end-page: 5788 ident: b0185 article-title: Correlating asphaltene dimerization with its molecular structure by potential of mean force calculation and data mining publication-title: Energ. Fuel. – volume: 248 start-page: 128 year: 2014 end-page: 134 ident: b0105 article-title: Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole publication-title: Chem. Eng. J. – volume: 21 start-page: 4800 year: 2019 end-page: 4814 ident: b0235 article-title: A sustainable biochar catalyst synergized with copper heteroatoms and CO publication-title: Green Chem. – volume: 122961 year: 2020 ident: b0035 article-title: Conventional and Emerging Technologies for Removal of Antibiotics from Wastewater publication-title: J. Hazard. Mater. – volume: 283 start-page: 936 year: 2016 end-page: 947 ident: b0080 article-title: Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials publication-title: Chem. Eng. J. – volume: 12 year: 2017 ident: b0210 article-title: Sorption of tetracycline on biochar derived from rice straw under different temperatures publication-title: Plos One – volume: 160 start-page: 55 year: 2017 end-page: 63 ident: b0175 article-title: Comparison of characteristics of twenty-one types of biochar and their ability to remove multi-heavy metals and methylene blue in solution publication-title: Fuel Process. Technol. – volume: 237 start-page: 128 year: 2019 end-page: 138 ident: b0050 article-title: Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors publication-title: J. Environ. Manage. – volume: 123455 year: 2020 ident: b0230 article-title: Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water publication-title: Bioresource Technol. – volume: 36 start-page: 2 year: 2020 end-page: 18 ident: b0065 article-title: Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls publication-title: Soil Use Manage. – volume: 123613 year: 2020 ident: b0165 article-title: Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials publication-title: Bioresource Technol. – volume: 7 start-page: 943 year: 2020 ident: b0255 article-title: Application of Biochar Derived From Pyrolysis of Waste Fiberboard on Tetracycline Adsorption in Aqueous Solution publication-title: Front. Chem. – volume: 1–29 year: 2020 ident: b0070 article-title: New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment publication-title: Soil Use Manage. – volume: 124 start-page: 673 year: 2017 end-page: 692 ident: b0215 article-title: Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials publication-title: Water Res. – volume: 115 start-page: 146 year: 2018 end-page: 157 ident: b0265 article-title: Tetracycline removal with activated carbons produced by hydrothermal carbonisation of Agave americana fibres and mimosa tannin publication-title: Ind. Crop. Prod. – volume: 323 start-page: 361 year: 2017 end-page: 380 ident: b0030 article-title: Treatment technologies for emerging contaminants in water: a review publication-title: Chem. Eng. J. – volume: 10 start-page: 2265 year: 2018 ident: b0180 article-title: Suitability of Different Agricultural and Urban Organic Wastes as Feedstocks for the Production of Biochar—Part 1: Physicochemical Characterisation publication-title: Sustainability – reference: C. Molnar, Interpretable machine learning. A Guide for Making Black Box Models Explainable, https://christophm.github.io/interpretable-ml-book/2019. – volume: 711 year: 2020 ident: b0220 article-title: Preparation and application of magnetic biochar in water treatment: A critical review publication-title: Sci. Total. Environ. – volume: 68 start-page: 135 year: 2018 end-page: 145 ident: b0190 article-title: Random forests: A machine learning methodology to highlight the volatile organic compounds involved in olfactory perception publication-title: Food Qual. Prefer. – volume: 182 year: 2020 ident: b0195 article-title: Fault diagnosis in low voltage smart distribution grids using gradient boosting trees publication-title: Electr. Pow. Syst. Res. – volume: 307 year: 2020 ident: b0020 article-title: A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts publication-title: Bioresour. Technol. – volume: 36 start-page: 320 year: 2020 end-page: 327 ident: b0060 article-title: Biochar effects on soil chemical properties and mobilization of cadmium (Cd) and lead (Pb) in paddy soil publication-title: Soil Use Manage. – volume: 372 start-page: 536 year: 2019 end-page: 550 ident: b0045 article-title: Biochar-based engineered composites for sorptive decontamination of water: A review publication-title: Chem. Eng. J. – volume: 121 start-page: 235 year: 2012 end-page: 240 ident: b0295 article-title: Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution publication-title: Bioresource Technol. – volume: 35 start-page: 3925 year: 2019 end-page: 3936 ident: b0280 article-title: Enhanced Adsorption of Aqueous Tetracycline Hydrochloride on Renewable Porous Clay-Carbon Adsorbent Derived from Spent Bleaching Earth via Pyrolysis publication-title: Langmuir – volume: 1–12 year: 2019 ident: b0320 article-title: Corncobs as a potentially low-cost biosorbent for sulfamethoxazole removal from aqueous solution publication-title: Sep. Sci. Technol. – volume: 36 start-page: 245 year: 2015 end-page: 253 ident: b0315 article-title: Sorption of sulphamethoxazole by the biochars derived from rice straw and alligator flag publication-title: Environ. Technol. – start-page: 431 year: 2013 end-page: 439 ident: b0245 article-title: Understanding variable importances in forests of randomized trees publication-title: Advances in neural information processing systems – volume: 378 year: 2019 ident: b0120 article-title: The application of machine learning methods for prediction of metal sorption onto biochars publication-title: J. Hazard. Mater. – volume: 381 year: 2020 ident: b0085 article-title: Antagonistic and synergistic analysis of antibiotic adsorption on Prosopis juliflora activated carbon in multicomponent systems publication-title: Chem. Eng. J. – volume: 6 start-page: 31920 year: 2016 ident: b0300 article-title: Adsorption of Antibiotics on Graphene and Biochar in Aqueous Solutions Induced by pi-pi Interactions publication-title: Sci. Rep. – volume: 54 start-page: 4583 year: 2020 end-page: 4591 ident: b0140 article-title: Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials publication-title: Environ. Sci. Technol. – volume: 38 start-page: 3043 year: 2004 end-page: 3050 ident: b0270 article-title: Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors publication-title: Water Res. – volume: 368 start-page: 847 year: 2019 end-page: 864 ident: b0240 article-title: Adsorption characteristics of supercritical CO publication-title: Chem. Eng. J. – volume: 273 year: 2020 ident: b0130 article-title: Machine learning exploration of the critical factors for CO publication-title: J. Clean. Product. – volume: 153 start-page: 365 year: 2016 end-page: 385 ident: b0055 article-title: Adsorptive removal of antibiotics from aqueous solution using carbon materials publication-title: Chemosphere – volume: 664 start-page: 312 year: 2019 end-page: 321 ident: b0040 article-title: Degradation of antibiotics by modified vacuum-UV based processes: mechanistic consequences of H publication-title: Sci. Total Environ. – volume: 321 start-page: 868 year: 2017 end-page: 878 ident: b0225 article-title: Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution publication-title: J. Hazard. Mater. – volume: 288 year: 2019 ident: b0205 article-title: Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions publication-title: Bioresource Technol. – volume: 466 start-page: 101 year: 2016 end-page: 112 ident: b0275 article-title: Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A publication-title: J. Colloid. Interface Sci. – volume: 189 start-page: 301 year: 2017 end-page: 308 ident: b0015 article-title: Antibiotics in the agricultural soils from the Yangtze River Delta, China publication-title: Chemosphere – volume: 36 start-page: 245 year: 2015 ident: 10.1016/j.cej.2020.126782_b0315 article-title: Sorption of sulphamethoxazole by the biochars derived from rice straw and alligator flag publication-title: Environ. Technol. doi: 10.1080/09593330.2014.943299 – volume: 323 start-page: 361 year: 2017 ident: 10.1016/j.cej.2020.126782_b0030 article-title: Treatment technologies for emerging contaminants in water: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.04.106 – volume: 36 start-page: 320 year: 2020 ident: 10.1016/j.cej.2020.126782_b0060 article-title: Biochar effects on soil chemical properties and mobilization of cadmium (Cd) and lead (Pb) in paddy soil publication-title: Soil Use Manage. doi: 10.1111/sum.12557 – volume: 122961 year: 2020 ident: 10.1016/j.cej.2020.126782_b0035 article-title: Conventional and Emerging Technologies for Removal of Antibiotics from Wastewater publication-title: J. Hazard. Mater. – volume: 248 start-page: 168 year: 2014 ident: 10.1016/j.cej.2020.126782_b0110 article-title: Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.03.006 – volume: 189 start-page: 301 year: 2017 ident: 10.1016/j.cej.2020.126782_b0015 article-title: Antibiotics in the agricultural soils from the Yangtze River Delta, China publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.09.040 – volume: 719 year: 2020 ident: 10.1016/j.cej.2020.126782_b0100 article-title: Enhanced adsorption of bisphenol A, tylosin, and tetracycline from aqueous solution to nitrogen-doped multiwall carbon nanotubes via cation-pi and pi-pi electron-donor-acceptor (EDA) interactions publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2020.137389 – ident: 10.1016/j.cej.2020.126782_b0250 – volume: 627 start-page: 235 year: 2018 ident: 10.1016/j.cej.2020.126782_b0095 article-title: Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2018.01.249 – volume: 396 year: 2020 ident: 10.1016/j.cej.2020.126782_b0170 article-title: Effect of biochar-derived dissolved organic matter on adsorption of sulfamethoxazole and chloramphenicol publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122598 – volume: 35 start-page: 3925 year: 2019 ident: 10.1016/j.cej.2020.126782_b0280 article-title: Enhanced Adsorption of Aqueous Tetracycline Hydrochloride on Renewable Porous Clay-Carbon Adsorbent Derived from Spent Bleaching Earth via Pyrolysis publication-title: Langmuir doi: 10.1021/acs.langmuir.8b04179 – volume: 54 start-page: 7008 year: 2020 ident: 10.1016/j.cej.2020.126782_b0145 article-title: Predicting Aqueous Adsorption of Organic Compounds onto Biochars, Carbon Nanotubes, Granular Activated Carbons, and Resins with Machine Learning publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c02526 – volume: 6 start-page: 31920 year: 2016 ident: 10.1016/j.cej.2020.126782_b0300 article-title: Adsorption of Antibiotics on Graphene and Biochar in Aqueous Solutions Induced by pi-pi Interactions publication-title: Sci. Rep. doi: 10.1038/srep31920 – volume: 160 start-page: 55 year: 2017 ident: 10.1016/j.cej.2020.126782_b0175 article-title: Comparison of characteristics of twenty-one types of biochar and their ability to remove multi-heavy metals and methylene blue in solution publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2017.02.019 – volume: 321 start-page: 868 year: 2017 ident: 10.1016/j.cej.2020.126782_b0225 article-title: Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.10.006 – volume: 664 start-page: 312 year: 2019 ident: 10.1016/j.cej.2020.126782_b0040 article-title: Degradation of antibiotics by modified vacuum-UV based processes: mechanistic consequences of H2O2 and K2S2O8 in the presence of halide ions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.006 – volume: 259 start-page: 24 year: 2018 ident: 10.1016/j.cej.2020.126782_b0285 article-title: Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2018.03.013 – volume: 68 start-page: 135 year: 2018 ident: 10.1016/j.cej.2020.126782_b0190 article-title: Random forests: A machine learning methodology to highlight the volatile organic compounds involved in olfactory perception publication-title: Food Qual. Prefer. doi: 10.1016/j.foodqual.2018.02.008 – volume: 121 start-page: 235 year: 2012 ident: 10.1016/j.cej.2020.126782_b0295 article-title: Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2012.06.085 – volume: 123455 year: 2020 ident: 10.1016/j.cej.2020.126782_b0230 article-title: Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water publication-title: Bioresource Technol. – volume: 50 start-page: 13892 year: 2011 ident: 10.1016/j.cej.2020.126782_b0290 article-title: Adsorption Interaction of Tetracyclines with Porous Synthetic Resins publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie202166g – volume: 10 start-page: 2265 year: 2018 ident: 10.1016/j.cej.2020.126782_b0180 article-title: Suitability of Different Agricultural and Urban Organic Wastes as Feedstocks for the Production of Biochar—Part 1: Physicochemical Characterisation publication-title: Sustainability doi: 10.3390/su10072265 – volume: 43 start-page: 479 year: 2015 ident: 10.1016/j.cej.2020.126782_b0025 article-title: Antibiotic Pollution in the Environment: A Review publication-title: CLEAN - Soil, Air, Water doi: 10.1002/clen.201300989 – volume: 283 start-page: 936 year: 2016 ident: 10.1016/j.cej.2020.126782_b0080 article-title: Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.08.023 – volume: 372 start-page: 536 year: 2019 ident: 10.1016/j.cej.2020.126782_b0045 article-title: Biochar-based engineered composites for sorptive decontamination of water: A review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.097 – volume: 153 start-page: 365 year: 2016 ident: 10.1016/j.cej.2020.126782_b0055 article-title: Adsorptive removal of antibiotics from aqueous solution using carbon materials publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.03.083 – volume: 381 year: 2020 ident: 10.1016/j.cej.2020.126782_b0085 article-title: Antagonistic and synergistic analysis of antibiotic adsorption on Prosopis juliflora activated carbon in multicomponent systems publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122713 – volume: 36 start-page: 2 year: 2020 ident: 10.1016/j.cej.2020.126782_b0065 article-title: Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls publication-title: Soil Use Manage. doi: 10.1111/sum.12546 – volume: 21 start-page: 4800 year: 2019 ident: 10.1016/j.cej.2020.126782_b0235 article-title: A sustainable biochar catalyst synergized with copper heteroatoms and CO2 for singlet oxygenation and electron transfer routes publication-title: Green Chem. doi: 10.1039/C9GC01843C – ident: 10.1016/j.cej.2020.126782_b0125 – volume: 7 start-page: 943 year: 2020 ident: 10.1016/j.cej.2020.126782_b0255 article-title: Application of Biochar Derived From Pyrolysis of Waste Fiberboard on Tetracycline Adsorption in Aqueous Solution publication-title: Front. Chem. doi: 10.3389/fchem.2019.00943 – volume: 182 year: 2020 ident: 10.1016/j.cej.2020.126782_b0195 article-title: Fault diagnosis in low voltage smart distribution grids using gradient boosting trees publication-title: Electr. Pow. Syst. Res. doi: 10.1016/j.epsr.2020.106254 – volume: 368 start-page: 847 year: 2019 ident: 10.1016/j.cej.2020.126782_b0240 article-title: Adsorption characteristics of supercritical CO2/CH4 on different types of coal and a machine learning approach publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.008 – volume: 123613 year: 2020 ident: 10.1016/j.cej.2020.126782_b0165 article-title: Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials publication-title: Bioresource Technol. – volume: 43 start-page: 3 year: 2000 ident: 10.1016/j.cej.2020.126782_b0200 article-title: Artificial neural networks: fundamentals, computing, design, and application publication-title: J. Microbiol. Methods doi: 10.1016/S0167-7012(00)00201-3 – volume: 124 start-page: 673 year: 2017 ident: 10.1016/j.cej.2020.126782_b0215 article-title: Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials publication-title: Water Res. doi: 10.1016/j.watres.2017.07.070 – volume: 12 year: 2017 ident: 10.1016/j.cej.2020.126782_b0210 article-title: Sorption of tetracycline on biochar derived from rice straw under different temperatures publication-title: Plos One – volume: 250 year: 2020 ident: 10.1016/j.cej.2020.126782_b0155 article-title: A review on contamination and removal of sulfamethoxazole from aqueous solution using cleaner techniques: Present and future perspective publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119553 – volume: 711 year: 2020 ident: 10.1016/j.cej.2020.126782_b0220 article-title: Preparation and application of magnetic biochar in water treatment: A critical review publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2019.134847 – volume: 237 start-page: 128 year: 2019 ident: 10.1016/j.cej.2020.126782_b0050 article-title: Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2019.02.068 – volume: 6 start-page: 28023 year: 2016 ident: 10.1016/j.cej.2020.126782_b0260 article-title: Preparation of highly porous carbon from sustainable α-cellulose for superior removal performance of tetracycline and sulfamethazine from water publication-title: RSC Adv. doi: 10.1039/C6RA00277C – volume: 288 year: 2019 ident: 10.1016/j.cej.2020.126782_b0205 article-title: Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2019.121527 – volume: 9 start-page: 17841 year: 2019 ident: 10.1016/j.cej.2020.126782_b0310 article-title: Activated carbons derived from hydrothermal impregnation of sucrose with phosphoric acid: remarkable adsorbents for sulfamethoxazole removal publication-title: RSC Adv. doi: 10.1039/C9RA02610J – volume: 388 year: 2020 ident: 10.1016/j.cej.2020.126782_b0135 article-title: Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe3O4-g-CN@ PEI-β-CD nanocomposite: Modeling by response surface methodology (RSM), boosted regression tree (BRT), and general regression neural network (GRNN) publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121769 – volume: 54 start-page: 4583 year: 2020 ident: 10.1016/j.cej.2020.126782_b0140 article-title: Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b06287 – volume: 390 year: 2020 ident: 10.1016/j.cej.2020.126782_b0090 article-title: Recent developments of two-dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124642 – volume: 32 start-page: 5779 year: 2018 ident: 10.1016/j.cej.2020.126782_b0185 article-title: Correlating asphaltene dimerization with its molecular structure by potential of mean force calculation and data mining publication-title: Energ. Fuel. doi: 10.1021/acs.energyfuels.8b00470 – volume: 171 start-page: 66 year: 2017 ident: 10.1016/j.cej.2020.126782_b0305 article-title: The role of ash content on bisphenol A sorption to biochars derived from different agricultural wastes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.12.041 – volume: 79 start-page: 7 year: 2014 ident: 10.1016/j.cej.2020.126782_b0005 article-title: The environmental release and fate of antibiotics publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2014.01.005 – volume: 378 year: 2019 ident: 10.1016/j.cej.2020.126782_b0120 article-title: The application of machine learning methods for prediction of metal sorption onto biochars publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.06.004 – volume: 38 start-page: 3043 year: 2004 ident: 10.1016/j.cej.2020.126782_b0270 article-title: Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors publication-title: Water Res. doi: 10.1016/j.watres.2004.04.048 – volume: 49 start-page: 6772 year: 2015 ident: 10.1016/j.cej.2020.126782_b0010 article-title: Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00729 – volume: 273 year: 2020 ident: 10.1016/j.cej.2020.126782_b0130 article-title: Machine learning exploration of the critical factors for CO2 adsorption capacity on porous carbon materials at different pressures publication-title: J. Clean. Product. doi: 10.1016/j.jclepro.2020.122915 – volume: 307 year: 2020 ident: 10.1016/j.cej.2020.126782_b0020 article-title: A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.123228 – volume: 1–12 year: 2019 ident: 10.1016/j.cej.2020.126782_b0320 article-title: Corncobs as a potentially low-cost biosorbent for sulfamethoxazole removal from aqueous solution publication-title: Sep. Sci. Technol. – volume: 115 start-page: 146 year: 2018 ident: 10.1016/j.cej.2020.126782_b0265 article-title: Tetracycline removal with activated carbons produced by hydrothermal carbonisation of Agave americana fibres and mimosa tannin publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2018.02.005 – volume: 248 start-page: 128 year: 2014 ident: 10.1016/j.cej.2020.126782_b0105 article-title: Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.03.021 – start-page: 431 year: 2013 ident: 10.1016/j.cej.2020.126782_b0245 article-title: Understanding variable importances in forests of randomized trees publication-title: Advances in neural information processing systems – volume: 466 start-page: 101 year: 2016 ident: 10.1016/j.cej.2020.126782_b0275 article-title: Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A publication-title: J. Colloid. Interface Sci. doi: 10.1016/j.jcis.2015.12.003 – volume: 50 start-page: 1 year: 2017 ident: 10.1016/j.cej.2020.126782_b0160 article-title: Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review publication-title: Environ. Toxicol. Phar. doi: 10.1016/j.etap.2017.01.004 – volume: 1–29 year: 2020 ident: 10.1016/j.cej.2020.126782_b0070 article-title: New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment publication-title: Soil Use Manage. – volume: 379 year: 2020 ident: 10.1016/j.cej.2020.126782_b0075 article-title: Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: Experimental study and modeling analysis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122320 – volume: 6 start-page: eaax9324 year: 2020 ident: 10.1016/j.cej.2020.126782_b0150 article-title: Inverse design of porous materials using artificial neural networks publication-title: Sci. Adv. doi: 10.1126/sciadv.aax9324 – volume: 246 start-page: 150 year: 2017 ident: 10.1016/j.cej.2020.126782_b0115 article-title: Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2017.07.150 |
| SSID | ssj0006919 |
| Score | 2.6820302 |
| Snippet | [Display omitted]
•Antiobiotics adsorption on carbon-based materials was modeled by machine learning.•Random forest showed best prediction accuracy than GBT... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 126782 |
| SubjectTerms | Activated carbon Antibiotics removal Engineered biochar Industrial wastewater treatment Random forest algorithm Sustainable waste management |
| Title | Machine learning for the selection of carbon-based materials for tetracycline and sulfamethoxazole adsorption |
| URI | https://dx.doi.org/10.1016/j.cej.2020.126782 |
| Volume | 406 |
| WOSCitedRecordID | wos000600988800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3212 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006919 issn: 1385-8947 databaseCode: AIEXJ dateStart: 19970115 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZuoftYezKuht62NOKQ3xJJD2W0rENVgbtWOiLkSU5FzI7OE6b5j_tP-7Iuthrt7ENBsEEIVnmnA-d48_ngtBrSjIJsAiDKJSarVIyYFEeBnAcU-0waxw0zSbIyQmdTNinXu-by4W5WJKioNstW_1XVcMYKFunzv6Fuv1NYQD-g9LhCmqH6x8p_mMTHqlcP4ipDyRcNy1vrIMoeJWVRaCNmDwAr9U8mZmr6oqLK9E4oA2vvlnmvGk1veU7HY3I5bqsVl6lrtCBqz2g2hqHvjKF7hzCdQSQYVBPL-f1ziQaW1KCjTukxPlso2dN5sVu1n48Mlzt-awspjNees5hbSlvky1_cDT4MmgZXpMaUEwXzkRbhiMKdVC0yfE0tNuN1JvmpI7pKKDMlOscKDNGSRzEUfjD8Z40FQ1umgrDWiwGQi0GsKuuswGGO2rtoo9WPNV76a10t3lwr8gttBeREaN9tHf4_njywZv-MWs6yfhnc5_Rm4DCaxv93BHqODdn99E9-1aCDw2aHqCeKh6iu51alY_QV4sr7HCFASsYcIU9rnCZ4y6usMeVmdvBFQbF4-u4wi2uHqPPb4_Pjt4FtldHIEDAdSDzLBFynMuh4LmuSijoeMRkyGlEBE8YFRJElw-HchSLLCIhV4RznsQxyUIKTvMT1C_KQj1FGExeDr-IszBLiEyYzFgGbm6ei0wBGvfR0AkuFbaQve6nskxdxOIiBVmnWtapkfU-euOXrEwVl99NTpw2UuuGGvcyBej8etmzf1v2HN1pMf8C9etqo16i2-Kinq-rVxZg3wEjVq4X |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+the+selection+of+carbon-based+materials+for+tetracycline+and+sulfamethoxazole+adsorption&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Zhu%2C+Xinzhe&rft.au=Wan%2C+Zhonghao&rft.au=Tsang%2C+Daniel+C.W.&rft.au=He%2C+Mingjing&rft.date=2021-02-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=406&rft_id=info:doi/10.1016%2Fj.cej.2020.126782&rft.externalDocID=S1385894720329107 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |