A New Predictive Method for Classification Tasks in Machine Learning: Multi-Class Multi-Label Logistic Model Tree (MMLMT)

This paper introduces a novel classification method for multi-class multi-label datasets, named multi-class multi-label logistic model tree (MMLMT). Our approach supports multi-label learning to predict multiple class labels simultaneously, thereby enhancing the model’s capacity to capture complex r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) Jg. 12; H. 18; S. 2825
Hauptverfasser: Ghasemkhani, Bita, Balbal, Kadriye Filiz, Birant, Derya
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.09.2024
Schlagworte:
ISSN:2227-7390, 2227-7390
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a novel classification method for multi-class multi-label datasets, named multi-class multi-label logistic model tree (MMLMT). Our approach supports multi-label learning to predict multiple class labels simultaneously, thereby enhancing the model’s capacity to capture complex relationships within the data. The primary goal is to improve the accuracy of classification tasks involving multiple classes and labels. MMLMT integrates the logistic regression (LR) and decision tree (DT) algorithms, yielding interpretable models with high predictive performance. By combining the strengths of LR and DT, our method offers a flexible and powerful framework for handling multi-class multi-label data. Extensive experiments demonstrated the effectiveness of MMLMT across a range of well-known datasets with an average accuracy of 85.90%. Furthermore, our method achieved an average of 9.87% improvement compared to the results of state-of-the-art studies in the literature. These results highlight MMLMT’s potential as a valuable approach to multi-label learning.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math12182825