On Some Formulas for the Lauricella Function

Lauricella, G. in 1893 defined four multidimensional hypergeometric functions FA, FB, FC and FD. These functions depended on three variables but were later generalized to many variables. Lauricella’s functions are infinite sums of products of variables and corresponding parameters, each of them has...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 11; číslo 24; s. 4978
Hlavní autoři: Ryskan, Ainur, Ergashev, Tuhtasin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.12.2023
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Lauricella, G. in 1893 defined four multidimensional hypergeometric functions FA, FB, FC and FD. These functions depended on three variables but were later generalized to many variables. Lauricella’s functions are infinite sums of products of variables and corresponding parameters, each of them has its own parameters. In the present work for Lauricella’s function FA(n), the limit formulas are established, some expansion formulas are obtained that are used to write recurrence relations, and new integral representations and a number of differentiation formulas are obtained that are used to obtain the finite and infinite sums. In the presentation and proof of the obtained formulas, already known expansions and integral representations of the considered FA(n) function, definitions of gamma and beta functions, and the Gaussian hypergeometric function of one variable are used.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math11244978