MLD: An Intelligent Memory Leak Detection Scheme Based on Defect Modes in Software

With the expansion of the scale and complexity of multimedia software, the detection of software defects has become a research hotspot. Because of the large scale of the existing software code, the efficiency and accuracy of the existing software defect detection algorithms are relatively low. We pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Jg. 24; H. 7; S. 947
Hauptverfasser: Yuan, Ling, Zhou, Siyuan, Pan, Peng, Wang, Zhenjiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 07.07.2022
MDPI
Schlagworte:
ISSN:1099-4300, 1099-4300
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the expansion of the scale and complexity of multimedia software, the detection of software defects has become a research hotspot. Because of the large scale of the existing software code, the efficiency and accuracy of the existing software defect detection algorithms are relatively low. We propose an intelligent memory leak detection scheme MLD based on defect modes in software. Based on the analysis of existing memory leak defect modes, we summarize memory operation behaviors (allocation, release and transfer) and present a state machine model. We employ a fuzzy matching algorithm based on regular expression to determine the memory operation behaviors and then analyze the change in the state machine to assess the vulnerability in the source code. To improve the efficiency of detection and solve the problem of repeated detection at the function call point, we propose a function summary method for memory operation behaviors. The experimental results demonstrate that the method we proposed has high detection speed and accuracy. The algorithm we proposed can identify the defects of the software, reduce the risk of being attacked to ensure safe operation.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1099-4300
1099-4300
DOI:10.3390/e24070947