A New Methodology for the Development of Efficient Multistep Methods for First-Order IVPs with Oscillating Solutions

In this research, we provide a novel approach to the development of effective numerical algorithms for the solution of first-order IVPs. In particular, we detail the fundamental theory behind the development of the aforementioned approaches and show how it can be applied to the Adams–Bashforth appro...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics (Basel) Ročník 12; číslo 4; s. 504
Hlavný autor: Simos, Theodore
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.02.2024
Predmet:
ISSN:2227-7390, 2227-7390
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this research, we provide a novel approach to the development of effective numerical algorithms for the solution of first-order IVPs. In particular, we detail the fundamental theory behind the development of the aforementioned approaches and show how it can be applied to the Adams–Bashforth approach in three steps. The stability of the new scheme is also analyzed. We compared the performance of our novel algorithm to that of established approaches and found it to be superior. Numerical experiments confirmed that, in comparison to standard approaches to the numerical solution of Initial Value Problems (IVPs), including oscillating solutions, our approach is significantly more effective.
AbstractList In this research, we provide a novel approach to the development of effective numerical algorithms for the solution of first-order IVPs. In particular, we detail the fundamental theory behind the development of the aforementioned approaches and show how it can be applied to the Adams–Bashforth approach in three steps. The stability of the new scheme is also analyzed. We compared the performance of our novel algorithm to that of established approaches and found it to be superior. Numerical experiments confirmed that, in comparison to standard approaches to the numerical solution of Initial Value Problems (IVPs), including oscillating solutions, our approach is significantly more effective.
Audience Academic
Author Simos, Theodore
Author_xml – sequence: 1
  givenname: Theodore
  orcidid: 0000-0002-9220-6924
  surname: Simos
  fullname: Simos, Theodore
BookMark eNptkU1vGyEQhlGVSk3d3PoDkHrtpsCyy3K00qSxlMSV-nFFLDtjY60XF3Cj_PvgOJWiKsxhmGGeV8D7npxMYQJCPnJ2XteafdnavOaCSdYw-YacCiFUpcrByYv9O3KW0oaVpXndSX1K8pzewT29hbwOQxjD6oFiiDSvgX6FvzCG3RamTAPSS0Tv_KG43Y_Zpwy7Zyw9IVc-plwt4wCRLn5_T_Te5zVdJufH0WY_reiPMO6zD1P6QN6iHROcPecZ-XV1-fPiurpZfltczG8qJ1mbKysVcw1rwQH2HPsOrVV8cEy3tukbjgO2rO85YFc7jcgH6UB0QmPj-q629YwsjrpDsBuzi35r44MJ1punRogrY2P2bgRT986haFSHHUg76B7QykGqxinWCA1F69NRaxfDnz2kbDZhH6dyfSN0zbTSuuQZOT9OrWwR9ROGHK0rMcDWu2IY-tKfq05yJrhqCyCOgIshpQhonM_28EsF9KPhzBzcNS_dLdDn_6B_b3t1_BHxd6pQ
CitedBy_id crossref_primary_10_3390_axioms13080514
crossref_primary_10_1007_s40314_025_03203_0
crossref_primary_10_3390_math13111833
crossref_primary_10_1016_j_apnum_2024_08_024
crossref_primary_10_3390_math12233652
crossref_primary_10_1007_s10910_025_01727_8
crossref_primary_10_3390_math12233824
crossref_primary_10_1016_j_mex_2024_103045
crossref_primary_10_3390_sym16050508
crossref_primary_10_1007_s00009_025_02876_5
crossref_primary_10_1007_s10910_025_01748_3
crossref_primary_10_1016_j_matcom_2025_05_024
crossref_primary_10_3390_axioms13090649
Cites_doi 10.1016/0377-0427(84)90002-5
10.1016/S0010-4655(02)00676-8
10.1016/j.apm.2012.05.001
10.1016/S0097-8485(00)00087-5
10.1016/j.cam.2007.05.016
10.1007/s10910-017-0762-8
10.1002/9780470141526
10.1016/j.cam.2011.07.004
10.1007/s10092-022-00456-7
10.1016/j.apnum.2005.09.005
10.1023/A:1016629706668
10.1137/S0036142995286763
10.1016/j.cpc.2007.07.007
10.1007/s11075-008-9202-y
10.1515/math-2021-0009
10.1016/j.physrep.2009.07.005
10.1016/j.cam.2008.11.011
10.1007/s10543-010-0250-z
10.1016/j.apnum.2008.04.002
10.1016/0010-4655(78)90047-4
10.1016/j.newast.2004.12.004
10.1016/S0377-0427(96)00165-3
10.1142/S0129183198000200
10.1016/S0377-0427(97)00188-X
10.1016/S0377-0427(99)00340-4
10.1016/0010-4655(85)90100-6
10.1016/j.apnum.2004.01.005
10.1007/s40096-021-00420-6
10.1016/0377-0427(86)90094-4
10.1007/BF01937488
10.1016/j.cpc.2004.11.002
10.1007/s40314-021-01728-8
10.1142/S0129183101002826
10.1016/0898-1221(95)00155-R
10.1016/j.cam.2006.10.025
10.1016/j.cam.2008.01.026
10.1007/s10910-009-9626-1
10.1016/S0377-0427(96)00156-2
10.1007/s11075-007-9142-y
10.1155/2011/407151
10.1016/j.cpc.2005.09.005
10.1016/S0377-0427(99)00055-2
10.1016/S0010-4655(02)00460-5
10.1016/0377-0427(86)90224-4
10.1016/j.cpc.2010.08.019
10.1016/j.cpc.2009.04.005
10.1016/S0377-0427(00)00599-9
10.1007/s41980-023-00765-9
10.1145/79505.79507
10.1016/j.cpc.2006.07.015
10.1007/BF02163234
10.1002/mma.8528
10.1016/0377-0427(90)90001-G
10.1016/0898-1221(95)00196-4
10.1016/j.cam.2004.05.017
10.1016/0771-050X(80)90013-3
10.1016/0010-4655(83)90036-X
10.1016/0021-9991(87)90139-2
10.1142/S0129183106009394
10.1016/j.cam.2005.01.020
10.1086/115629
10.1080/00207160.2018.1437263
10.1016/j.cpc.2006.03.004
10.1016/j.cam.2003.12.015
10.1016/j.cpc.2012.06.013
10.1016/j.cam.2020.113312
10.1016/0010-4655(87)90020-8
10.1016/j.camwa.2006.06.012
10.1007/BF01952791
10.1016/j.cpc.2012.12.018
10.1007/s13370-023-01075-3
10.1016/j.cam.2013.10.015
10.1016/j.cam.2004.03.003
10.1007/s10910-009-9606-5
10.1016/j.cam.2005.04.028
10.1016/0377-0427(96)00005-2
10.1016/j.cpc.2008.01.046
10.1142/S0129183107010449
10.1016/j.aml.2010.07.003
10.1016/0010-4655(80)90062-4
10.1002/qua.560530504
10.1016/j.aej.2023.04.026
10.1007/BF01395931
10.1016/0010-4655(87)90013-0
10.3390/math9030232
10.1137/0718030
10.1016/j.cpc.2007.05.003
10.1016/j.mcm.2005.09.015
10.1093/imanum/9.2.145
10.1016/j.apnum.2006.12.003
10.47836/pjst.31.2.10
10.1016/0377-0427(87)90113-0
10.1137/050641752
10.1007/s12190-021-01575-0
10.1093/imanum/16.2.179
10.1016/S0377-0427(01)00474-5
10.1016/0010-4655(81)90101-6
10.1016/j.cam.2003.03.002
10.1080/00207169808804642
10.1016/j.cpc.2014.05.030
10.1007/s10910-011-9824-5
10.47836/mjms.16.4.07
10.3390/math9080806
10.3390/math7121197
10.1007/BF02281728
10.1016/j.physrep.2013.11.003
10.1016/S0010-4655(96)00147-6
10.1093/imanum/7.2.235
10.1016/j.apnum.2008.03.018
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3390/math12040504
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_3bccf2578f8e4ad9befa4d475c70529e
A784102176
10_3390_math12040504
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c406t-a470c506ecefb1fb8faa71dc096a5b51fdf60bb1ef83c9ff1d4ce2829f5cb83a3
IEDL.DBID DOA
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001169804000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Fri Oct 03 12:38:40 EDT 2025
Fri Jul 25 12:10:27 EDT 2025
Tue Nov 04 18:33:44 EST 2025
Sat Nov 29 07:13:24 EST 2025
Tue Nov 18 22:41:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-a470c506ecefb1fb8faa71dc096a5b51fdf60bb1ef83c9ff1d4ce2829f5cb83a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9220-6924
OpenAccessLink https://doaj.org/article/3bccf2578f8e4ad9befa4d475c70529e
PQID 2930979929
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_3bccf2578f8e4ad9befa4d475c70529e
proquest_journals_2930979929
gale_infotracacademiconefile_A784102176
crossref_citationtrail_10_3390_math12040504
crossref_primary_10_3390_math12040504
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Konguetsof (ref_100) 2010; 47
Konguetsof (ref_92) 2017; 55
ref_131
Demba (ref_43) 2023; 21
ref_132
Avdelas (ref_9) 2000; 62
Ixaru (ref_79) 2001; 132
(ref_97) 2007; 209
Konguetsof (ref_93) 2011; 49
ref_18
Chawla (ref_63) 1987; 17
Fang (ref_96) 2007; 189
(ref_95) 2007; 53
Ferrandiz (ref_6) 1998; 35
Raptis (ref_82) 1982; 28
Simos (ref_127) 2013; 37
Franco (ref_29) 2009; 59
Shokri (ref_113) 2020; 376
Franco (ref_126) 1990; 30
Franco (ref_91) 2014; 232
Stiefel (ref_122) 1969; 13
Quinlan (ref_10) 1990; 100
ref_121
Franco (ref_34) 2006; 56
ref_123
(ref_85) 2007; 46
(ref_94) 2006; 17
Chawla (ref_59) 1984; 11
Raptis (ref_112) 1991; 31
Ahmad (ref_45) 2020; 14
Wang (ref_110) 2007; 18
Daele (ref_103) 1995; 30
Avdelas (ref_11) 1996; 31
Raptis (ref_80) 1987; 44
Ixaru (ref_130) 2002; 140
Ixaru (ref_76) 1980; 19
Thomas (ref_5) 1997; 87
Calvo (ref_28) 2010; 50
Anastassi (ref_58) 2009; 482–483
Coleman (ref_108) 2006; 44
Calvo (ref_26) 2012; 236
Vyver (ref_21) 2005; 10
Lee (ref_46) 2023; 72
Wang (ref_111) 2006; 175
Ramos (ref_129) 2010; 23
Lyche (ref_14) 1972; 10
Franco (ref_24) 2014; 260
Wang (ref_104) 2006; 174
Avdelas (ref_12) 1996; 72
Franco (ref_56) 2003; 161
Ixaru (ref_68) 1987; 73
Vyver (ref_22) 2006; 188
(ref_40) 2005; 184
Ramos (ref_41) 2008; 178
Dormand (ref_54) 1980; 6
Chawla (ref_62) 1986; 16
Franco (ref_125) 2001; 26
Franco (ref_55) 2004; 50
Konguetsof (ref_17) 2001; 1
Coleman (ref_64) 1989; 9
Simos (ref_13) 1995; 53
(ref_98) 2008; 60
Chen (ref_49) 2022; 59
Tocino (ref_38) 2005; 42
Cash (ref_124) 1990; 16
Calvo (ref_27) 2010; 181
Chien (ref_47) 2023; 31
Paternoster (ref_109) 2012; 183
Franco (ref_36) 2005; 173
Ixaru (ref_67) 1987; 44
Wang (ref_105) 2006; 175
(ref_39) 2005; 166
Fang (ref_86) 2008; 58
Dormand (ref_20) 1987; 7
Fang (ref_53) 2020; 97
Franco (ref_25) 2013; 184
Godwin (ref_116) 2022; 28
Calvo (ref_30) 2009; 223
Franco (ref_33) 2007; 177
Ixaru (ref_70) 1997; 79
Senu (ref_50) 2022; 41
Franco (ref_89) 2016; 273
Rizea (ref_78) 2010; 48
Salih (ref_115) 2022; 16
Simos (ref_60) 1997; 79
Coleman (ref_66) 2000; 126
Lee (ref_117) 2022; 16
Fatheah (ref_101) 2011; 2011
Thomas (ref_61) 1984; 24
Raptis (ref_81) 1983; 28
Senu (ref_52) 2021; 15
Fang (ref_120) 2021; 392
Chawla (ref_77) 1986; 15
Franco (ref_23) 2015; 252
Tang (ref_107) 2005; 173
Raptis (ref_15) 1978; 14
Ixaru (ref_69) 1997; 100
Tang (ref_106) 2004; 169
ref_119
Ixaru (ref_73) 2001; 25
Calvo (ref_31) 2008; 218
Kalogiratou (ref_57) 2014; 536
Franco (ref_35) 2002; 147
Wu (ref_37) 2009; 180
(ref_99) 2008; 48
Wang (ref_102) 2005; 461
Simos (ref_19) 2001; 10
Petzold (ref_128) 1981; 18
Hollevoet (ref_88) 2009; 230
Daele (ref_71) 1998; 66
Ixaru (ref_74) 2003; 150
Ixaru (ref_72) 1999; 106
Berghe (ref_87) 2009; 59
Coleman (ref_65) 1996; 16
Raptis (ref_4) 1984; 25
Ixaru (ref_75) 1985; 38
ref_44
Demba (ref_42) 2023; 49
Raptis (ref_83) 1981; 24
Demba (ref_48) 2023; 46
ref_1
ref_3
ref_2
Obaidat (ref_118) 2021; 19
Raptis (ref_84) 1980; 24
ref_8
Zhai (ref_51) 2022; 68
Abdulganiy (ref_114) 2023; 34
Simos (ref_16) 1998; 9
Franco (ref_90) 2014; 185
ref_7
Calvo (ref_32) 2008; 178
References_xml – volume: 11
  start-page: 277
  year: 1984
  ident: ref_59
  article-title: A Noumerov-Type Method with Minimal Phase-Lag for the Integration of 2nd Order Periodic Initial-Value Problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(84)90002-5
– volume: 150
  start-page: 116
  year: 2003
  ident: ref_74
  article-title: Exponentially Fitted Variable Two-Step BDF Algorithm for First Order Odes
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(02)00676-8
– volume: 14
  start-page: 403
  year: 2020
  ident: ref_45
  article-title: Higher Order Three Derivative Runge–Kutta Method with Phase–Fitting and Amplification–Fitting Technique for Periodic IVPs
  publication-title: Malays. J. Math. Sci.
– volume: 37
  start-page: 1983
  year: 2013
  ident: ref_127
  article-title: New Open Modified Newton Cotes Type Formulae as Multilayer Symplectic Integrators
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.05.001
– volume: 25
  start-page: 39
  year: 2001
  ident: ref_73
  article-title: Numerical operations on oscillatory functions
  publication-title: Comput. Chem.
  doi: 10.1016/S0097-8485(00)00087-5
– volume: 218
  start-page: 421
  year: 2008
  ident: ref_31
  article-title: Structure preservation of exponentially fitted Runge-Kutta Methods
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2007.05.016
– volume: 28
  start-page: 73
  year: 2022
  ident: ref_116
  article-title: An efficient block solver of trigonometrically fitted method for stiff odes
  publication-title: Adv. Differ. Equ. Control Process.
– volume: 55
  start-page: 1808
  year: 2017
  ident: ref_92
  article-title: A generator of families of two-Step numerical Methods with free parameters and minimal phase-lag
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-017-0762-8
– ident: ref_2
  doi: 10.1002/9780470141526
– volume: 236
  start-page: 3665
  year: 2012
  ident: ref_26
  article-title: On some new low storage implementations of time advancing Runge-Kutta Methods
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2011.07.004
– volume: 59
  start-page: 14
  year: 2022
  ident: ref_49
  article-title: Optimal three-stage implicit exponentially-fitted RKN methods for solving second-order ODEs
  publication-title: Calcolo
  doi: 10.1007/s10092-022-00456-7
– ident: ref_132
– volume: 62
  start-page: 1375
  year: 2000
  ident: ref_9
  article-title: Dissipative high phase-lag order Numerov-type methods for the numerical solution of the Schrödinger equation
  publication-title: Phys. Rev.
– volume: 56
  start-page: 1040
  year: 2006
  ident: ref_34
  article-title: New Methods for oscillatory systems based on ARKN Methods
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2005.09.005
– ident: ref_1
– volume: 26
  start-page: 347
  year: 2001
  ident: ref_125
  article-title: Four-stage symplectic and P–stable SDIRKN methods with dispersion of high order
  publication-title: Numer. Algorithms
  doi: 10.1023/A:1016629706668
– ident: ref_123
– volume: 35
  start-page: 1684
  year: 1998
  ident: ref_6
  article-title: A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142995286763
– volume: 252
  start-page: 45
  year: 2015
  ident: ref_23
  article-title: Two new embedded pairs of explicit Runge-Kutta Methods adapted to the numerical solution of oscillatory problems
  publication-title: Appl. Math. Comput.
– volume: 178
  start-page: 15
  year: 2008
  ident: ref_41
  article-title: Exponential fitting BDF-Runge-Kutta Algorithms
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2007.07.007
– volume: 48
  start-page: 327
  year: 2008
  ident: ref_99
  article-title: Exponential fitted Gauss, Radau and Lobatto Methods of low order
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-008-9202-y
– volume: 19
  start-page: 225
  year: 2021
  ident: ref_118
  article-title: A new implicit symmetric method of sixth algebraic order with vanished phase-lag and its first derivative for solving Schrodinger’s equation
  publication-title: Open Math.
  doi: 10.1515/math-2021-0009
– volume: 482–483
  start-page: 1
  year: 2009
  ident: ref_58
  article-title: Numerical multistep methods for the efficient solution of quantum mechanics and related problems
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2009.07.005
– volume: 230
  start-page: 260
  year: 2009
  ident: ref_88
  article-title: The Optimal Exponentially-Fitted Numerov Method for Solving Two-Point Boundary Value Problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.11.011
– volume: 50
  start-page: 3
  year: 2010
  ident: ref_28
  article-title: On high order symmetric and symplectic trigonometrically fitted Runge-Kutta Methods with an even number of stages
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-010-0250-z
– volume: 59
  start-page: 959
  year: 2009
  ident: ref_29
  article-title: Accuracy and linear Stability of RKN Methods for solving second-order stiff problems
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2008.04.002
– volume: 14
  start-page: 1
  year: 1978
  ident: ref_15
  article-title: Exponential—fitting methods for the numerical solution of the Schrödinger equation
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(78)90047-4
– volume: 10
  start-page: 261
  year: 2005
  ident: ref_21
  article-title: A Symplectic Exponentially Fitted Modified Runge-Kutta-Nyström Method for the Numerical Integration of Orbital Problems
  publication-title: New Astron.
  doi: 10.1016/j.newast.2004.12.004
– volume: 376
  start-page: 125116
  year: 2020
  ident: ref_113
  article-title: A new family of explicit linear two-step singularly P-stable Obrechkoff methods for the numerical solution of second-order IVPs
  publication-title: Appl. Math. Comput.
– volume: 79
  start-page: 87
  year: 1997
  ident: ref_70
  article-title: Four Step Methods for Y′′ = F(X,Y)
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(96)00165-3
– volume: 9
  start-page: 271
  year: 1998
  ident: ref_16
  article-title: An eighth order exponentially-fitted method for the numerical solution of the Schrödinger equation
  publication-title: Int. J. Mod. Phys.
  doi: 10.1142/S0129183198000200
– volume: 87
  start-page: 215
  year: 1997
  ident: ref_5
  article-title: A family of hybrid exponentially fitted predictor-corrector methods for the numerical integration of the radial Schrodinger equation
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(97)00188-X
– volume: 126
  start-page: 47
  year: 2000
  ident: ref_66
  article-title: Mixed Collocation Methods for Y′′ = F(X,Y)
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(99)00340-4
– volume: 38
  start-page: 329
  year: 1985
  ident: ref_75
  article-title: Comparison of some four-Step Methods for the numerical solution of the Schrödinger equation
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(85)90100-6
– volume: 273
  start-page: 493
  year: 2016
  ident: ref_89
  article-title: Explicit exponentially fitted two-Step hybrid Methods of high order for second-order oscillatory IVPs
  publication-title: Appl. Math. Comput.
– volume: 50
  start-page: 427
  year: 2004
  ident: ref_55
  article-title: Runge-Kutta methods adapted to the numerical integration of oscillatory problems
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2004.01.005
– volume: 28
  start-page: 373
  year: 1982
  ident: ref_82
  article-title: 2-Step Methods for the Numerical-Solution of the Schrödinger-Equation
  publication-title: Comput. Phys. Commun.
– volume: 16
  start-page: 281
  year: 2022
  ident: ref_117
  article-title: High-order exponentially fitted and trigonometrically fitted explicit two-derivative Runge-Kutta-type methods for solving third-order oscillatory problems
  publication-title: Math. Sci.
  doi: 10.1007/s40096-021-00420-6
– ident: ref_3
– volume: 16
  start-page: 233
  year: 1986
  ident: ref_62
  article-title: 2-Step 4Th-Order P-Stable Methods with Phase-Lag of Order 6 for Y′′ = F(T,Y)
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(86)90094-4
– volume: 24
  start-page: 225
  year: 1984
  ident: ref_61
  article-title: Phase properties of high order, almost P-stable formulae
  publication-title: BIT Numer. Math.
  doi: 10.1007/BF01937488
– volume: 166
  start-page: 109
  year: 2005
  ident: ref_39
  article-title: Comparison of some special optimized fourth-order Runge-Kutta Methods for the numerical solution of the Schrödinger equation
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2004.11.002
– volume: 41
  start-page: 25
  year: 2022
  ident: ref_50
  article-title: Numerical study for periodical delay differential equations using Runge-Kutta with trigonometric interpolation
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-021-01728-8
– volume: 10
  start-page: 1453
  year: 2001
  ident: ref_19
  article-title: On the construction of efficient methods for second order IVPs with oscillating solution
  publication-title: Int. J. Mod. Phys.
  doi: 10.1142/S0129183101002826
– volume: 30
  start-page: 37
  year: 1995
  ident: ref_103
  article-title: Properties and Implementation of R-Adams Methods Based On Mixed-Type Interpolation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(95)00155-R
– volume: 209
  start-page: 33
  year: 2007
  ident: ref_97
  article-title: Phase-fitted and amplification-fitted two-Step hybrid Methods for y′′ = f (x, y)
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2006.10.025
– volume: 223
  start-page: 387
  year: 2009
  ident: ref_30
  article-title: Sixth-order symmetric and symplectic exponentially fitted Runge-Kutta Methods of the Gauss type
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.01.026
– volume: 60
  start-page: 711
  year: 2008
  ident: ref_98
  article-title: Efficient one-Step Methods for the Schrödinger equation
  publication-title: Match-Commun. Math. Comput. Chem.
– volume: 48
  start-page: 55
  year: 2010
  ident: ref_78
  article-title: Exponential fitting Method for the time-dependent Schrödinger equation
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-009-9626-1
– volume: 79
  start-page: 189
  year: 1997
  ident: ref_60
  article-title: A Finite Difference Method for the numerical solution of the Schrödinger equation
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(96)00156-2
– volume: 46
  start-page: 333
  year: 2007
  ident: ref_85
  article-title: P-stable exponentially-fitted Obrechkoff Methods of arbitrary order for second-order differential equations
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-007-9142-y
– volume: 2011
  start-page: 407151
  year: 2011
  ident: ref_101
  article-title: Hendi, P-Stable Higher Derivative Methods with Minimal Phase-Lag for Solving Second Order Differential Equations
  publication-title: J. Appl. Math.
  doi: 10.1155/2011/407151
– volume: 174
  start-page: 109
  year: 2006
  ident: ref_104
  article-title: Trigonometrically-fitted Method with the Fourier frequency spectrum for undamped Duffing equation
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2005.09.005
– volume: 106
  start-page: 87
  year: 1999
  ident: ref_72
  article-title: A Conditionally P-Stable Fourth-Order Exponential-Fitting Method for Y′′ = F(X, Y)
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(99)00055-2
– volume: 147
  start-page: 770
  year: 2002
  ident: ref_35
  article-title: Runge-Kutta-Nyström Methods adapted to the numerical integration of perturbed oscillators
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(02)00460-5
– volume: 15
  start-page: 329
  year: 1986
  ident: ref_77
  article-title: A Noumerov-type Method with minimal phase-lag for the integration of second order periodic initial-value problems II Explicit Method
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(86)90224-4
– volume: 181
  start-page: 2044
  year: 2010
  ident: ref_27
  article-title: Symmetric and symplectic exponentially fitted Runge-Kutta Methods of high order
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2010.08.019
– volume: 180
  start-page: 1545
  year: 2009
  ident: ref_37
  article-title: Note on derivation of order conditions for ARKN Methods for perturbed oscillators
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.04.005
– volume: 132
  start-page: 83
  year: 2001
  ident: ref_79
  article-title: Weights of the Exponential Fitting Multistep Algorithms for First-Order Odes
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(00)00599-9
– volume: 49
  start-page: 24
  year: 2023
  ident: ref_42
  article-title: A Phase– and Amplification–Fitted 5(4) Diagonally Implicit Runge–Kutta–Nyström Pair for Oscillatory Systems
  publication-title: Bull. Iran. Math. Soc.
  doi: 10.1007/s41980-023-00765-9
– volume: 16
  start-page: 201
  year: 1990
  ident: ref_124
  article-title: A variable order Runge–Kutta method for initial value problems with rapidly varying right-hand sides
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/79505.79507
– volume: 175
  start-page: 692
  year: 2006
  ident: ref_111
  article-title: Obrechkoff one-Step Method fitted with Fourier spectrum for undamped Duffing equation
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2006.07.015
– volume: 13
  start-page: 154
  year: 1969
  ident: ref_122
  article-title: Stabilization of Cowell’s method
  publication-title: Numer. Math.
  doi: 10.1007/BF02163234
– volume: 46
  start-page: 560
  year: 2023
  ident: ref_48
  article-title: A trigonometrically adapted 6(4) explicit Runge-Kutta-Nyström pair to solve oscillating systems
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.8528
– volume: 30
  start-page: 1
  year: 1990
  ident: ref_126
  article-title: High-order P-stable multistep methods
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(90)90001-G
– volume: 31
  start-page: 85
  year: 1996
  ident: ref_11
  article-title: Embedded methods for the numerical solution of the Schrödinger equation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(95)00196-4
– volume: 173
  start-page: 389
  year: 2005
  ident: ref_36
  article-title: Stability of explicit ARKN Methods for perturbed oscillators
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2004.05.017
– volume: 6
  start-page: 19
  year: 1980
  ident: ref_54
  article-title: A family of embedded Runge-Kutta formulae
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0771-050X(80)90013-3
– volume: 28
  start-page: 427
  year: 1983
  ident: ref_81
  article-title: Exponentially-Fitted Solutions of the Eigenvalue Shrödinger Equation with Automatic Error Control
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(83)90036-X
– volume: 73
  start-page: 306
  year: 1987
  ident: ref_68
  article-title: Numerov Method Maximally Adapted to the Schrödinger-Equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(87)90139-2
– volume: 17
  start-page: 663
  year: 2006
  ident: ref_94
  article-title: A phase-fitted and amplification-fitted explicit two-Step hybrid Method for second-order periodic initial value problems
  publication-title: Int. J. Mod. Phys.
  doi: 10.1142/S0129183106009394
– volume: 184
  start-page: 442
  year: 2005
  ident: ref_40
  article-title: Frequency evaluation for exponentially fitted Runge-Kutta Methods
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2005.01.020
– volume: 189
  start-page: 178
  year: 2007
  ident: ref_96
  article-title: A trigonometrically fitted explicit hybrid Method for the numerical integration of orbital problems
  publication-title: Appl. Math. Comput.
– volume: 100
  start-page: 1694
  year: 1990
  ident: ref_10
  article-title: Symmetric multistep methods for the numerical integration of planetary orbits
  publication-title: Astron. J.
  doi: 10.1086/115629
– volume: 97
  start-page: 85
  year: 2020
  ident: ref_53
  article-title: An explicit trigonometrically fitted Runge-Kutta method for stiff and oscillatory problems with two frequencies
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2018.1437263
– volume: 175
  start-page: 241
  year: 2006
  ident: ref_105
  article-title: Trigonometrically-fitted Method for a periodic initial value problem with two frequencies
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2006.03.004
– volume: 169
  start-page: 171
  year: 2004
  ident: ref_106
  article-title: The various order explicit multistep exponential fitting for systems of ordinary differential equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2003.12.015
– volume: 183
  start-page: 2499
  year: 2012
  ident: ref_109
  article-title: Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.06.013
– volume: 392
  start-page: 113312
  year: 2021
  ident: ref_120
  article-title: Two-frequency trigonometrically-fitted and symmetric linear multi-step methods for second-order oscillators
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2020.113312
– volume: 44
  start-page: 95
  year: 1987
  ident: ref_80
  article-title: Exponential and Bessel Fitting Methods for the Numerical-Solution of the Schrödinger-Equation
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(87)90020-8
– volume: 53
  start-page: 1339
  year: 2007
  ident: ref_95
  article-title: An explicit Numerov-type Method for second-order differential equations with oscillating solutions
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2006.06.012
– volume: 31
  start-page: 160
  year: 1991
  ident: ref_112
  article-title: A four-step phase-fitted method for the numerical integration of second order initial-value problems
  publication-title: BIT Numer. Math.
  doi: 10.1007/BF01952791
– volume: 184
  start-page: 1310
  year: 2013
  ident: ref_25
  article-title: Some procedures for the construction of high-order exponentially fitted Runge-Kutta-Nyström Methods of explicit type
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.12.018
– volume: 21
  start-page: 219
  year: 2023
  ident: ref_43
  article-title: A New Phase- and Amplification-Fitted Sixth-Order Explicit RKN Method to Solve Oscillating Systems
  publication-title: Thai J. Math.
– volume: 34
  start-page: 36
  year: 2023
  ident: ref_114
  article-title: A trigonometrically fitted intra-step block Falkner method for the direct integration of second-order delay differential equations with oscillatory solutions
  publication-title: Afr. Mat.
  doi: 10.1007/s13370-023-01075-3
– volume: 1
  start-page: 143
  year: 2001
  ident: ref_17
  article-title: On the construction of Exponentially-Fitted Methods for the Numerical Solution of the Schrödinger Equation
  publication-title: J. Comput. Meth. Sci. Eng.
– volume: 232
  start-page: 643
  year: 2014
  ident: ref_91
  article-title: Trigonometrically fitted nonlinear two-Step Methods for solving second order oscillatory IVPs
  publication-title: Appl. Math. Comput.
– volume: 260
  start-page: 482
  year: 2014
  ident: ref_24
  article-title: Symplectic explicit Methods of Runge-Kutta-Nyström type for solving perturbed oscillators
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.10.015
– volume: 173
  start-page: 155
  year: 2005
  ident: ref_107
  article-title: The arbitrary order implicit multistep schemes of exponential fitting and their applications
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2004.03.003
– ident: ref_8
– volume: 47
  start-page: 871
  year: 2010
  ident: ref_100
  article-title: A new two-Step hybrid Method for the numerical solution of the Schrödinger equation
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-009-9606-5
– volume: 188
  start-page: 309
  year: 2006
  ident: ref_22
  article-title: On the Generation of P-Stable Exponentially Fitted Runge-Kutta-Nyström Methods By Exponentially Fitted Runge-Kutta Methods
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2005.04.028
– volume: 72
  start-page: 345
  year: 1996
  ident: ref_12
  article-title: A generator of high-order embedded P-stable method for the numerical solution of the Schrödinger equation
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(96)00005-2
– volume: 178
  start-page: 732
  year: 2008
  ident: ref_32
  article-title: Sixth-order symmetric and symplectic exponentially fitted modified Runge-Kutta Methods of Gauss type
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2008.01.046
– volume: 18
  start-page: 419
  year: 2007
  ident: ref_110
  article-title: A P-stable eighteenth-order six-Step Method for periodic initial value problems
  publication-title: Int. J. Mod. Phys.
  doi: 10.1142/S0129183107010449
– volume: 23
  start-page: 1378
  year: 2010
  ident: ref_129
  article-title: On the frequency choice in trigonometrically fitted methods
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2010.07.003
– volume: 19
  start-page: 23
  year: 1980
  ident: ref_76
  article-title: A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(80)90062-4
– volume: 53
  start-page: 473
  year: 1995
  ident: ref_13
  article-title: Predictor-corrector phase-fitted methods for y′′ = f(x,y) and an application to the Schrödinger equation
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560530504
– volume: 72
  start-page: 605
  year: 2023
  ident: ref_46
  article-title: On efficient frequency-dependent parameters of explicit two-derivative improved Runge-Kutta-Nystr|"rom method with application to two-body problem
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2023.04.026
– volume: 10
  start-page: 65
  year: 1972
  ident: ref_14
  article-title: Chebyshevian multistep methods for ordinary differential equations
  publication-title: Numer. Math.
  doi: 10.1007/BF01395931
– volume: 44
  start-page: 11
  year: 1987
  ident: ref_67
  article-title: Coleman Method Maximally Adapted to the Schrödinger-Equation
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(87)90013-0
– ident: ref_44
  doi: 10.3390/math9030232
– ident: ref_131
– volume: 18
  start-page: 455
  year: 1981
  ident: ref_128
  article-title: An efficient numerical method for highly oscillatory ordinary differential equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0718030
– volume: 177
  start-page: 479
  year: 2007
  ident: ref_33
  article-title: Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2007.05.003
– volume: 42
  start-page: 873
  year: 2005
  ident: ref_38
  article-title: Symplectic conditions for exponential fitting Runge-Kutta-Nyström Methods
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2005.09.015
– volume: 9
  start-page: 145
  year: 1989
  ident: ref_64
  article-title: Numerical-Methods for Y′′ = F(X,Y) Via Rational-Approximations for the Cosine
  publication-title: Ima J. Numer. Anal.
  doi: 10.1093/imanum/9.2.145
– ident: ref_7
– volume: 58
  start-page: 341
  year: 2008
  ident: ref_86
  article-title: A Trigonometrically Fitted Explicit Numerov-Type Method for Second-Order Initial Value Problems with Oscillating Solutions
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2006.12.003
– volume: 31
  start-page: 843
  year: 2023
  ident: ref_47
  article-title: Efficient Frequency-Dependent Coefficients of Explicit Improved Two-Derivative Runge-Kutta Type Methods for Solving Third- Order IVPs
  publication-title: Pertanika J. Sci. Technol.
  doi: 10.47836/pjst.31.2.10
– volume: 17
  start-page: 365
  year: 1987
  ident: ref_63
  article-title: An Explicit 6Th-Order Method with Phase-Lag of Order 8 for Y′′ = F(T, Y)
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90113-0
– volume: 44
  start-page: 1441
  year: 2006
  ident: ref_108
  article-title: Truncation Errors in exponential fitting for oscillatory problems
  publication-title: Siam J. Numer. Anal.
  doi: 10.1137/050641752
– volume: 68
  start-page: 1449
  year: 2022
  ident: ref_51
  article-title: Exponentially-fitted and trigonometrically-fitted implicit RKN methods for solving y” = f (t, y)
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-021-01575-0
– volume: 16
  start-page: 179
  year: 1996
  ident: ref_65
  article-title: P-Stability and Exponential-Fitting Methods for Y′′ = F(X, Y)
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/16.2.179
– volume: 140
  start-page: 423
  year: 2002
  ident: ref_130
  article-title: Frequency evaluation in exponential fitting multistep algorithms for ODEs
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(01)00474-5
– volume: 24
  start-page: 1
  year: 1981
  ident: ref_83
  article-title: On the Numerical-Solution of the Schrödinger-Equation
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(81)90101-6
– volume: 15
  start-page: 253
  year: 2021
  ident: ref_52
  article-title: Improved Runge-Kutta Method with Trigonometrically-Fitting Technique for Solving Oscillatory Problem
  publication-title: Malays. J. Math. Sci.
– volume: 25
  start-page: 113
  year: 1984
  ident: ref_4
  article-title: Exponential multistep methods for ordinary differential equations
  publication-title: Bull. Greek Math. Soc.
– ident: ref_18
– volume: 161
  start-page: 283
  year: 2003
  ident: ref_56
  article-title: A 5(3) pair of explicit ARKN methods for the numerical integration of perturbed oscillators
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2003.03.002
– volume: 66
  start-page: 299
  year: 1998
  ident: ref_71
  article-title: Exponential-Fitted Four-Step Methods for Y′′ = F(X,Y)
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207169808804642
– volume: 185
  start-page: 2527
  year: 2014
  ident: ref_90
  article-title: Optimization of explicit two-Step hybrid Methods for solving orbital and oscillatory problems
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2014.05.030
– volume: 49
  start-page: 1330
  year: 2011
  ident: ref_93
  article-title: A hybrid Method with phase-lag and derivatives equal to zero for the numerical integration of the Schrödinger equation
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-011-9824-5
– volume: 16
  start-page: 739
  year: 2022
  ident: ref_115
  article-title: Trigonometrically-Fitted Fifth Order Four-Step Predictor-Corrector Method for Solving Linear Ordinary Differential Equations with Oscillatory Solutions
  publication-title: Malays. J. Math. Sci.
  doi: 10.47836/mjms.16.4.07
– volume: 461
  start-page: 1639
  year: 2005
  ident: ref_102
  article-title: An improved trigonometrically fitted P-stable Obrechkoff Method for periodic initial-value problems
  publication-title: Proc. R. Soc. Math. Phys. Eng. Sci.
– ident: ref_119
  doi: 10.3390/math9080806
– ident: ref_121
  doi: 10.3390/math7121197
– volume: 24
  start-page: 241
  year: 1980
  ident: ref_84
  article-title: Exponential-Fitting Methods for the Numerical-Integration of the 4Th-Order Differential-Equation Yiv + F·Y = G
  publication-title: Computing
  doi: 10.1007/BF02281728
– volume: 536
  start-page: 75
  year: 2014
  ident: ref_57
  article-title: Runge–Kutta type methods with special properties for the numerical integration of ordinary differential equations
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2013.11.003
– volume: 100
  start-page: 56
  year: 1997
  ident: ref_69
  article-title: Four-Step Exponential-Fitted Methods for Nonlinear Physical Problems
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(96)00147-6
– volume: 7
  start-page: 235
  year: 1987
  ident: ref_20
  article-title: Families of Runge-Kutta-Nyström formulae
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/7.2.235
– volume: 59
  start-page: 815
  year: 2009
  ident: ref_87
  article-title: Exponentially-fitted Obrechkoff Methods for second-order differential equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2008.03.018
SSID ssj0000913849
Score 2.347663
Snippet In this research, we provide a novel approach to the development of effective numerical algorithms for the solution of first-order IVPs. In particular, we...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 504
SubjectTerms Adams–Bashforth methods
Algebra
Algorithms
Bibliographic literature
Boundary value problems
Comparative analysis
initial value problems (IVPs)
Methods
multistep methods
numerical solution
Stability analysis
trigonometric fitting
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB61oYdy6LsiLVQ-FPVQrfC-svapCigRPRAiBBU3y0-ohJKQDfx-Zhxny4VeOO7uWPJqxvP2NwDfychwWRgUXu4yshCZCJ5nWnvvy9x4mYZNNJOJuLyU05Rwa1Nb5UYnRkXt5pZy5AdoljiVoAr5a3Gb0dQoqq6mERovYYuQyngPtg5Hk-lZl2Uh1EtRyXXHe4nx_QH6gdd5gaJbp9lsG1sUIfufUszR2ozfPnef7-BN8jPZcC0Y7-GFn32A7ZMOpLX9CKshQxXHTuIM6ZhdZ-jBMqRgj1qJ2DywUcSZoId4XxcFY5GWtXHJ-C_6kNkpoXiy33-mLaPsLjtF63pDrXazK9Zl3z7BxXh0fnScpSEMmUVbv8p01XBb84G3Ppg8GBG0bnJnMfTRtanz4MKAG5P7IEorQ8hdZT2VZ0NtjSh1-Rl6s_nM7wCruauDzaV3ha1MSdPW0b3RAkMyK0vB-_Bzww5lE0I5Dcq4URipEPPUY-b1Yb-jXqyROZ6gOyTOdjSEpx1fzJdXKh1PVRprA2mvIHylnTQ-6MpVTW0bKoX6PvwguVB06nFLVqfLC_hjhJ-lhlS-pfBu0IfdjVyopA5a9U8ovvz_81d4XaDXtG4L34Xeannn9-CVvUfeLr8l6X4Atl0G5Q
  priority: 102
  providerName: ProQuest
Title A New Methodology for the Development of Efficient Multistep Methods for First-Order IVPs with Oscillating Solutions
URI https://www.proquest.com/docview/2930979929
https://doaj.org/article/3bccf2578f8e4ad9befa4d475c70529e
Volume 12
WOSCitedRecordID wos001169804000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB5K0kN7COmLukmNDi09lCXSatcrHZ1ikxDsLH2RnoSkldpCcELs5JjfnhmtbHwJvfQi2N0RaEejeUijbwA-kJHhunQovLwryEIUKgZeWBtCkMIFnYtNNPO5urjQ7VapL8oJ6-GBe8YdSed9JLmKKlS20y5EW3VVU_uGDqkCaV_eNFvBVNLBWkhV6T7TXWJcf4T-3x9RosjWuSbb2gYlqP7HFHKyMtN92MvuIRv3w3oBT8LiJTyfbbBVl69gNWaomdgslX5Om-IMHU-GFGwrA4hdRTZJ8BD0kK7Z4nxe527L1GX6F12_4pzAN9npz3bJaFOWnaNRvKQMucVvttk0ew0_ppPvX06KXDuh8GiiV4WtGu5rPgo-RCeiU9HaRnQeIxZbu1rELo64cyJEJb2OUXSVD3SqGmvvlLTyDewsrhbhLbCad3X0Qoeu9JWTVCQdvRKrMJLyWio-gM9rbhqfgcWpvsWlwQCDeG-2eT-Ajxvq6x5Q4xG6Y5qYDQ3BYKcXKBwmC4f5l3AM4BNNq6HFikPyNt85wB8j2CszplNXispGAzhcz7zJq3hp0BXidOxZ6nf_YzQH8KxEl6jP-T6EndXNbXgPT_0dSsDNEHaPJ_P26zAJMrZnTTGkTNRv1N5P8Ht7Omt_PQAZlv7g
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJw4Bt1oYAPVBxQVCdONvEBoQW66qrd7R4KKifXduxSqdpdNguIP8VvZCZxQi_l1gPHJHYUx88z45nxPIBXpGS4TAyCl5cRaYio8I5HWjvnRGycDGQT-XRanJzI2Qb8bs_CUFplKxNrQV0uLPnId1EtcQpBJfLd8ltErFEUXW0pNBpYHLhfP3HLVr0df8T53UmS0d7xh_0osApEFpXXOtJpzm3GB846b2JvCq91HpcWbXmdmSz2pR9wY2LnC2Gl93GZWkfxRp9ZUwgt8L03YDMl30kPNmfjyexL59WhKptFKpsMeyEk30W782uc4FLJAhdcq_tqioCrFEGt3Ub3_rf_ch_uBjuaDRvgP4ANN38IdyZdEdrqEayHDEU4m9Qc2XX0gKGFzrAFu5QqxRae7dV1NOiiPo-MwF-GblXdZXSONnJ0RFVK2fjzrGLkvWZHaD1cUCrh_Ix13sXH8Olahv0EevPF3G0By3iZeRtLVyY2NYLY5NF80wVuOa0UBe_Dm3b6lQ0V2IkI5ELhTozAoi6DpQ87XetlU3nkinbvCUldG6oXXt9YrM5UED9KGGs9SWdfuFSX0jiv0zLNM5tTqNf14TXhUJFUw0-yOhzOwIFRfTA1pPA0bV8HfdhucaiCuKvUXxA-_ffjl3Br_3hyqA7H04NncDtBC7FJgd-G3nr13T2Hm_YHzvPqRVhZDE6vG7R_ANwOaKc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aG0Jw4BtRGOADEwcU1YmTxj4g1LFWVGNdhQDtZmzHHkhTW5oC4l_jr-O9xCm7jNsOHJPYURz_3of9nt8P4DkZGa4yi-DlVUIWIpHB88QY771IrVeRbKKcTuXJiZptwe_uLAylVXY6sVHU1cLRHnkfzRKnEFSm-iGmRcwOxq-X3xJikKJIa0en0ULk0P_6icu3-tXkAOd6L8vGow9v3iaRYSBxaMjWiclL7go-8M4HmwYrgzFlWjn0601hizRUYcCtTX2QwqkQ0ip3nmKPoXBWCiPwvVdgpxRSokTt7I-ms_ebHR6quClz1WbbC6F4H33QL2mGYlNEXrjODjZ0ARcZhcbSjW_9z__oNtyM_jUbtgJxB7b8_C7cONoUp63vwXrIULWzo4Y7u4kqMPTcGbZg51Ko2CKwUVNfgy6ac8ooEMvYrW66jL-i75wcU_VSNvk0qxntarNj9CrOKMVwfso2u4734eOlDPsBbM8Xc_8QWMGrIrhU-SpzuRXEMo9unZG4FHVKSN6Dlx0UtIuV2Ykg5EzjCo2Ao88Dpwd7m9bLtiLJBe32CVWbNlRHvLmxWJ3qqJa0sM4F0tpB-txUyvpg8iovC1dSCNj34AVhUpO2w09yJh7awIFR3TA9pLA1LWsHPdjtMKmjGqz1X0A--vfjZ3ANkarfTaaHj-F6ho5jmxm_C9vr1Xf_BK66HzjNq6dRyBh8vmzM_gFMk3FK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Methodology+for+the+Development+of+Efficient+Multistep+Methods+for+First-Order+IVPs+with+Oscillating+Solutions&rft.jtitle=Mathematics+%28Basel%29&rft.au=Simos%2C+Theodore&rft.date=2024-02-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=12&rft.issue=4&rft.spage=504&rft_id=info:doi/10.3390%2Fmath12040504&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math12040504
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon